4 QC 874.3 .U63 4 no.42

De

.

NOAA Eastern Region Computer Programs and Problems NWS ERCP - No. 42

COARS FAMILY OF PROGRAMS

Lawrence Cedrone National Weather Service Office Wilmington, Delaware

Scientific Services Division Eastern Region Headquarters November 1987

LIBRARY	1.000
DEC 1 4 1987	
U.S. Dept. of C	

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

National Weather Service

	Ē
	Probl
	and
	Programs
MUDN	Computer
MEMORAN	Region
ECHNICAL	Eastern
NUAA I	Service.
	Wea ther
	National

Eastern Region Computer Programs and Problems (ERCP) series is a sub-of the Eastern Region Technical Memorandum series. It will serve as vehicle for the transfer of information about fully documented AFOS lication programs. The format ERCP - No. 1 will serve as the model future issuances in this series. The set the appl

- An AFOS version of the Flash Flood Checklist. Cynthia M. Scott, March 1981. (PB81 211252).
- An AFOS Applications Program to Compute Three-Hourly Stream Stages. Alan P. Blackburn, September 1981. (PB82 156886). 2
- Daniel P. Provost, PUPPY (AFOS Hydrologic Data Reporting Program). December 1981. (PB82 199720).
- Special Search Computer Program. Alan P. Blackburn, April 1982. (PB83 175455).
- Conversion of ALEMBIC\$ Workbins. Alan P. Blackburn, October 1982. (PB83 138313). 5
- Real-Time Quality Control of SAOs. John A. Billet, January 1983. (PB83 166082). 9
- Lawrence Automated Hourly Weather Collective from HRR Data Input. Cedrone. January 1983 (PB83 167122).
- Cynthia M. Scott, February 1983. Decoders for FRH, FTJ and FD Products. PB83 176057). 8
- (PB83 197947). Stability Analysis Program. Hugh M. Stone, March 1983. 6
- (PB83 213561). Help for AFOS Message Comp. Alan P. Blackburn, May 1983. 0
- Stability and Other Parameters from the First Transmission RAOB Data. Charles D. Little, May 1983. (PB83 220475). =
- TERR, PERR, and BIGC: Three Programs to Compute Verification Statistics. Matthew R. Peroutka, August 1983. (PB84 127521). Matthew R. Peroutka, August 1983. 12
- Matthew R. Peroutka, Decoder for Manually Digitized Radar Observations. June 1983. (PB84 127539). June 1983. 13
- Slick and Quick Data Entry for AFOS Era Verification (AEV) Program. Alan P. Blackburn. December 1983. (PB84 138726). Alan P. Blackburn, December 1983. 14
- MDR--Processing Manually Digitized Radar Observations. Matthew R. Peroutka, November 1983. (PB84 161462) (Revised June 1985, PB85-220580/AS) 15
- Hugh M. Stone, February 1984.(PB84 161447) RANP: Stability Analysis Program. 16
- Gerald G. Rigdon, March 1984. (PB84 174325) ZONES. 11
- Automated Analysis of Upper Air Soundings to Specify Precipitation Type. Joseph R. Bocchieri and Gerald G. Rigdon, March 1984. (PB84 174333) 18

- Verification of Asynchronous Transmissions. Lawrence Cedrone, March 1984. (PB84 189885) 19
- (PB84 199629) AFOS Hurricane Plotter. Charles Little, May 1984.
- (PB84 204551) WARN - A Warning Formatter. Gerald G. Rigdon, June 1984. 22 23
 - Plotting TDL Coastal Wind Forecasts. Paula Severe, June 1984 (Revised) PB84 220789)
 - Severe Weather Statistics STADTS Decoder (SWX) and Plotter (SWY). Hugh M. Stone, June 1984. (PB84 213693) 53
- WXR. Harold Opitz, August 1984. (PB84 23722) (Revised August 1985, PB84 100815/AS) 24
- FTASUM: Aviation Forecast Summaries. Matthew Peroutka, August 1984. [PB85 112977] 25
- SAOSUM: A Short Summary of Observations. Matthew Peroutka, October 1984. (PB85 120384) 26
 - Tom Niziol, December 1984 TRAJ - Single Station Trajectory Plot. (PBBS 135002) 27
 - VIDTEX. Gerald G. Rigdon, February 1985. (PB85 175669/AS) 58
- Isentropic Plotter. Charles D. Little, February 1985. (PB85 175651/AS) 53
 - CERR: An Aviation Verification Program. M. Peroutka, April 1985. 8
- Correlation and Regression Equation REGRS. Hugh M. Stone, May 1985. (PB85 213353/AS) PB85 204824/AS 31
- Scatter Diagram and Histogram Program SCATR. Hugh M. Stone, May 1985 (PB85 213346/AS) 32
- (PB85-221257/AS) TIMCHEK. Gerald G. Rigdon, June 1985. 33
- William C. Randel, October 1985. A MOS Temperature - PoP Forecast Plot. (PB86 120029/AS) 34
- R0T0DRAW. Thomas Niziol, November 1985 (PB86 131828/AS) 35
- LAWEB: Data Processing for the Great Lakes. William C. Randel and Matthew R. Peroutka, March 1986. (PB86 176658/AS) 36
- Hugh M. Stone, Convective Parameters & Hodograph Program - Convect. April 1986. (PB86-197225/AS) 37
 - DWXR SHEF Product Compression Program. Harold H. Opitz, September 1986. 38
- CRASHO: Listing Products Being Transmitted At the Time of a Crash. William C. Randel, January 1987 (PB87-151890/AS) 39
 - AVGPLOT and AVGCLIM. Alan Blackburn, March 1987 (PB87-180626/AS) 40
 - Ken LaPenta, Severe Meather Potential (SPOT) Plotfile Generator. July 1987. 41

QC 874.3 U63 No.42

NOAA Eastern Region Computer Programs and Problems NWS ERCP - No. 42

COARS FAMILY OF PROGRAMS

Lawrence Cedrone National Weather Service Office Wilmington, Delaware

Scientific Services Divis<mark>ion</mark> Eastern Region Headquarters November 1987

Acknowledgements

A project of this magnitude requires the cooperation, coordination and support of several key individuals. I would like to express sincere thanks to the following:

Alan Rezek, former Chief, Data Acquisition Division, ERH; for his insight in originating this project and for his firm belief that the AFOS system can indeed accommodate the automation of surface observational data.

Neil Crystall, Surface Observation Program Manager; for his continuous work in defining and refining the system's requirements and for coordinating its development through other offices.

Marian Peleski, MIC WSO Wilmington, De; for her firm and constant support in seeing that the COARS project was fully developed and implemented; for her assistance in writing the COARS Users Manual; and for providing both the hardware and software needed to produce this document as well as the Users Manual.

Clyde Dossett, Don Gauthier, Jim Saunders and Carl Smelgus - fellow staff members at WSO ILG; for their willingness to learn and test the system during its many developmental stages and for their always constructive criticism.

COARS FAMILY OF PROGRAMS

LAWRENCE CEDRONE WSO WILMINGTON, DE

I. Introduction

This document presents a series of AFOS Application programs developed with the intention of partially automating airways encoded surface observations, while electronically recording all observed weather phenomena. These tasks are accomplished through a series of AFOS preformats/messages and the application programs.

All data used by these programs is made available through AFOS preformats. The various fields within each preformat are structured to allow for the largest possible entry, although these long entries will rarely occur. Since this allowance must be made, the programs have been structured in a manner that would not impose strict input requirements on the user. Each program will search and find the appropriate characters within a field regardless of their location. Therefore it is not necessary for data to be left or right justfied within a particular field and extraneous space characters have no detrimental effects.

A total of 83 quality control checks are performed on each surface observation while it is being formulated by the SAO encoder program. The observed weather elements are formatted into the standard airways code, as well as recorded into the standard formats of Meteorological Forms 10A and 10B. Use of this system will completely eliminate the need for hand written forms as they are known today. Specials are coded as type 13 messages so that AFOS sites may set console alerts to signal their receipt.

A complete and very detailed explanation of system set-up and usage can be found in the COARS USERS MANUAL, available from the Eastern Region's DATAC Division.

An AFOS site interested in using, and permitted to use, this system must realize that a certain learning process is necessary. Experienced weather observers will have to adjust the manner in which they've been accustomed to entering their data into AFOS. A minimum 4 week period will be needed to gain familiarity, but once gained, COARS will prove its usefulness.

1

II. Methodology and Software Structure

The COARS system consists of several programs and files, so an installation macro, SETUP.MC, has been provided. Once this is run, and the database products added, all that needs to be done is (1) edit the 10B.DT file for local information and antecedent data, (2) edit the end-of-day macros EOD.MC and PRT10B.MC to reflect the site ID and (3) construct a local R-value file using the program RVAL.

RVAL

RVAL is executed only once after COARS has been first installed. The pressure reduction values used for input are already available on station in WBAN Form 54-7.3 (Pressure Reduction Ratio Table).

RVAL is an interactive program executed at the system console (Dasher). The program types instructions at the console telling the user what data must be entered and how to input it. The user is given the option of creating a new file, editing an existing R-value file or aborting the program. Since this program can take 5 to 10 minutes, the abort option is included just in case the user begins the program and then finds there is not enough time to complete it before a higher priority task must be accomplished, either by the individual or by the AFOS system. The edit option is available in case an error is made during the initial program run.

Using the station's WBAN Form 54-7.3 as reference, the user inputs the beginning and ending temperatures for which pressure reduction values already exist. Using these temperature values as boundaries, the program will then request the decimal portion of the for each corresponding temperature within the boundaries. The program prompts the user with a temperature value and the user responds by typing in the necessary correction factor. Processing ends when the upper boundary (highest temperature) has been reached.

The newly created file RVAL.DT is then given permanent and write protected attributes. Upon program completion the user must make a hard copy of this file (preferably at the PPM) and verify its accuracy. If there are any errors, the operator can rerun RVAL using the edit option to correct the mistake(s). Figure 1 is the R-Value file for WSO Wilmington, De.

Once the RVAL.DT file is complete and correct, this program can be deleted from disk.

SAO Encoder - SAO, SAP1, SESP and SAOIL

The SAO Encoder portion of COARS is comprised of four executable programs: SAO.SV, SAP1.SV, SESP.SV and SAOII.SV. SAO and SAOII are executed each time a weather observation is generated; SESP creates single-element specials while SAP1 creates all other ob types. The

TMP	R	TMP B			
-68		1 1.0031		63 1.9929	
-59		2 1.0031		64 1,8829	
-58		3 1.0031		65 1,8829	
-57		4 1.0031		55 1,0029	
-55		5 1.0031		67 1 9929	
- 56		6 1.0031		68 1 9929	
- 33		7 1.0031			
-04		8 1.0031			
-53		9 1.0031		70 1.0029	
-52		10 1.0031		72 1 9923	
-51		11 1.0031		73 1.0029	
-00		12 1.0031		74 1.0029	
19		13 1.0031		75 1.0029	
- 47		14 1.0031		76 1.0028	
-46		16 1 9939		77 1.0028	
-45		17 1 9938		78 1.0028	
14		19 1.0030		79 1.0028	
-43		19 1.0030		88 1.0028	
-42		20 1.0030		81 1.0028	
-41		21 1.0030		82 1.0029	
- 49		22 1.0030		83 1.0028	
-39		23 1.0030		84 1.0028	
-38		24 1.0030		85 1.0028	
-37		25 1.0030		86 1.0020	
-36		26 1.0030	100	87 1.0023	
-35		27 1.0930			
-34		28 1.0033		1 8928	
-33		29 1.0030		98 1.8028	
-32		30 1.0030		92 1.0928	
-31		31 1.0030		93 1.0029	
-:]		32 1.0030		94 1.0029	
- 7		33 1.0030		95 1.0029	
-27		34 1.0030		96 1.8028	
-25		35 1.0035		97 1.0028	
-25		37 1.0030		98 1.0029	
-24		38 1.0030		99 1.0028	
-23		39 1.0030		100 1.0029	
-22		48 1.8833		101	
-21		41 1.0029		192	
-20	1.0032	42 1.2029		103	
-19	1.0032	43 1.0029		104	
-18	1.0032	44 1.0029		105	
-17	1.0032	45 1.0029		197	
-15	1.0032	46 1.0029		100	
-15	1.0032	47 1.0029		100	
-14	1.0032	48 1.0029		110	
-13	1 9932	49 1.0029		111	
-12	1.0032	59 1.0029		112	
-19	1.0032	51 1.0029		113	
	1.0032	52 1.0029		114	
-9	1.0032	54 1.0029		115	
-7	1.0031	55 1.0029		116	
-6	1.0031	56 1.0029		117	
-5	1.0031	57 1.0029		118	
-4	1.0031	58 1.0029		119	
-3	1.0031	59 1.8829		120	
-2	1.0031	68 1.8829	F	igure 1. Sample RVAL	.DT
-1	1.0031	61 1.8829		for WSO ILG	5
0	1.0031	2			

observer needs only to start the first program (command RUN:SAO), for it queues the next (either SAP1.SV or SESP.SV) which in turn queues the last (SAOII.SV) via the process of program chaining. Figure 2 illustrates the chaining process (SESP branch not shown).

Observed weather parameters are entered into the AFOS database through the product cccOSOxxx using the preformat cccMCPOSO (Figure 3). This product containing the raw data is manipulated by the programs in order to produce cccSAOxxx.

SAO.SV is a small program whose purpose is to gather several data items needed by SAP1.SV. These items include reading the run command line switches via the ICE2.CM file to determine the mode of operation, formulating the necessary keynames, identifying a site's local time zone and determining the current date/time (UTC) and day/date/time (LST). Within SAO.SV are two subroutine modules:

ID - forms the keynames of the input product (cccOSOxxx) and the output product (cccSAOxxx). Reads the ICE2.CM file and determines mode of program execution.

LTZ - reads a site's AFOSGEN file to determine its local time zone.

If the observation is to be a single-element special (/S, /SC or /SL switches used), SAO will chain to SESP.SV. Otherwise, it executes SAP1.SV.

SAP1.SV is the work horse of the system where observations are formulated, checked for accuracy, stored and transmitted. The upper half of MF1-10B (columns 17-38) is also generated and recorded by this program. Within this portion of the SAO encoder, not only is the raw data used to formulate an observation, but also certain parameters are automatically created based on the input data. Examples of this include:

with surface and tower visibilities entered, program will decide which is the prevailing and place the other into a properly formatted remark

computation of sea level pressure in millibars from altimeter setting

computation of altimeter setting from station pressure

or computation of station pressure from altimeter setting

computation of dew point from dry bulb/wet bulb

computation of relative humidity

computation of 3 hour pressure tendency groups

TTAAOO KILG 2212	237				
OBS TYPE [] NXT LYR AMT [] [] SFC TWR VSBY VSBY	LOW LYR AMT	AMT OPO CLD TYPE C J C J TOT OPO CLD TYPE C J C J C J C J C J C J TOT DBSTRUCTIONS D	E CIG DSGNTR [] E CIG DSGNTR [] [] [] EMP DWPNT RY/B WET/B	CLD HGT CLD HGT C J C J C J WIND	1
r] []	C] [-	7
ONH/STA PRES	RVR REMARK	UTHE	K KELIHKNO	*	1
с ј с	د ۰ ۴	DDITIONAL REMARKS			3
C		ADDITIVE DOTO			
3/6 HR CLOU PRECIP CODE	D MINUTES OF	WATER EQUIVALENT	SNOW 24 DEPTH PR 1 9845 1 25	HR MAX ECIP TE J 40	MIN MP J
C] 1C	1 98C 1 9	20 3 9030 3 9040	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1
XTRA REMARKSE					
Z TIME OF OB	OBSRVR INITS	PLACE CURSOR HE	RE [] AND STR	IKE ENTER	PAGE 01

Figure 3. Sample cccMCPOSO for entering observed data.

formulation of a partial obscuration remark based upon obscuring phenomena/cloud entries

Data manipulated by this program is obtained from the database product ccc0S0xxx. Each field of this product is checked character by character to insure its validity within the field and then entire fields are tested against other fields for accuracy. This is the basis of the error checking routine.

An integer array of 82 elements is used in error checking. If an error is found, a particular element is set to zero, otherwise it is set to equal one. During program execution this array is checked and if any element equals zero an error message is written to the error file and an error flag is set. Toward the end of program execution this flag is checked. If on, the error message product is stored into the database, the observation is neither stored nor transmitted and the program terminates. If the error flag is off the observation is stored and transmitted and processing continues by chaining to program SA011.SV.

Within the SAP1 program there are 24 subroutine modules, most of which relate directly to a field in the input data (ccc0S0xxx):

SAOMCP - extracts the entire OSO message from the database and places it into an integer array of unpacked ASCII characters.

SKY - formulates and outputs the sky condition portion of an observation and sets pointers for a cloud code group and/or a partial obscuration remark.

SFCVS and TWRVS - test and output prevailing visibility and set pointers for a possible visibility remark and/or an RVR remark.

WX - tests and outputs the weather portion of the observation and sets flags for weather remarks.

TEMP - not called for specials. Tests the temperature value.

PRESS - tests the input pressure value and from it computes station pressure or altimeter setting and then sea level pressure. It then outputs sea level pressure and temperature.

DWPT - not called for specials. Tests the value input for dew point or wet bulb. If wet bulb, computes dew point. Also computes RH. Outputs dew point to the observation.

WND - tests validity of the wind entry and outputs the wind and altimeter setting.

RVR - called when prevailing visibility is one mile or less. Checks runway visual range entry and writes it as an SAO remark. REM1 - writes a partial obscuration remark and/or a surface/tower visibility remark to the observation.

REM2 - formats and outputs all observer entered remarks. Tests for the entry of certain mandatory remarks based upon previously encoded data. Also will output a pressure rising/falling rapidly remark if appropriate for hourly observations. This routine also, when appropriate, creates an RDOS file of "local" remarks (those that are not transmitted within an observation, but are recorded on MF1-10A).

APPRR - computes, formulates and writes a 3 hourly pressure tendency group, combined with 3/6 hourly precipitation amounts.

ADDAT - tests for the entry of and validity of certain additive data. Checks are performed on the minutes of sunshine group at 08 UTC, a cloud code group, if appropriate, at 3 hourly observations and a max/min or "4" group at 6 hourly observations. Also writes all additive data to the observation.

REM3 - based upon previouly encoded data, this routine tests the validity of the type of observation and searches the observer entered remarks for the logging of the beginning and ending of weather entries. This routine also maintains two RDOS files. One records the wind speed of each hourly observation and the other is a parameter file that is tested against the "next" observation.

XTREM - encodes extra remarks into the SAO (remarks such as RADAT, tide gage readings and/or city readings).

COPY - writes the entire observation as a string of characters into an RDOS file entitled "SAXXX". This is the file used in writing the observation into the MF1-10A format.

NXLN - called only if the encoded observation is more than one line (72 characters) long. It will reformat the report into a second or third line each having a maximum of 72 characters with the second and third lines indented 4 spaces to the right.

RARV - used to extract raw data from certain fields while setting pointers based on the characters entered.

W10B - writes all cloud layer information, temperature, dewpoint, station pressure and relative humidity on the Dasher and to the 10B.DT file (along with the APP group). Creates and stores the AFOS product "SAOSUPDAT".

SAD - used to extract the significant or needed digits from a real number.

CITAP - function to convert two single digit integers into packed ASCII characters. NUM - function to convert unpacked ASCII characters into an integer number of 1 to 5 digits.

SAERR - based upon an array subscript and its value, this routine will read error messages from the error text file and write them into the AFOS product "SAOERRORS".

Methods used in computing dew point from dry bulb/wet bulb readings and altimeter settings and/or station pressures are based on equations from the Smithsonian Meteorological Tables and were modified from a Basic language program entitled MAPSO, in use in the National Weather Service's Alaskan Region. Computation of relative humidty is made available through the RH function of the Topeka library (TOP.LB).

SAP1 will encode message type 13 in the communications header of specials and corrections, so the specials alert in AFOS load AOD 12.00 can be used.

If the observation is to be a single-element special, SAO will execute SESP.SV instead of SAP1. SESP also takes its input data from cccOSOxxx, but only reads the current weather and the remarks entries. Other entries are ignored. It makes only one check - to make sure the current weather is "TORNADO", "FUNNEL CLOUD" or "WATER SPOUT" - before creating and storing the observation. If the current weather is in error, it returns an error message. SESP calls three subroutines: SAOMCP, CITAP and COPY (described under SAP1 above).

Both SAP1 and SESP call SAOIL.SV as the final step in encoding the observation. Its functions include writing the completed SA to the Dasher and creating and maintaining an RDOS file of an entire day's collection of observations in the format of an MF1-10A. This program will also, at 3 hour increments, produce "back-up" copies of the MF1-10A and 10B and the hourly wind file in USER1 on DZO.

Subroutine modules within SAOII.SV are:

CORREM - generates the column 13 correction remark "COR ####" (UTC) in the MF1-10A file.

NEWDAY - when processing the first observation of a new day, this routine creates the MF1-10A file with its appropriate headings.

CHK10A - also on the first observation, CHK10A ensures that the newly created xxxSAOS contains all proper headings.

SPCS - initializes the prescribed elements of an integer array to ASCII spaces.

NWLN - places specific characters into data positions 1-8 of the MF1-10A for second and third lines of a single observation.

FLCPY - copies the MF1-10A, 10B.DT and HWND.DT files into USER1 during the hour of 3 hourly observations.

Synoptic Data - WSM

Stations that manually compose and transmit synoptic observations must run the program WSM after the synoptic ob has been completed (every six hours). Its sole purpose is to simply write a copy of an already existing synoptic ob from the database into the user's MF1-10A file. (The 10A file is on disk as filename xxxSAOS, where xxx is the using site's 3-letter ID.)

COARS users who do not record synoptics do not need this program and can delete it from disk.

Processing within this program is very simplistic. First the site's SKEL file is read to determine its node and local ID. From these WSM constructs the keyname for the SSM product as well as the xxxSAOS filename. Next, one AFOS block of data is read from the current version of the SSM (a synoptic should never be more than one block long) and reformatted by removing its headers, carriage return/line feed characters and any end of message identifiers. It is then output to occupy one complete line of the MF1-10A replica (or two, if necessary).

If the current version of a synoptic is not available or if system errors interfere with a sucessful program run, the program will abort and return an error to the user. The synoptic product should be checked and the program rerun.

End of day processing - PR10A, XTDSS, PR10B and ARCFILES

The last four COARS programs involve closing out one day's files and starting those of a new day. These tasks are accomplished through a series of RDOS macros (Figure 4) which manipulate files and execute the programs.

The first to be carried out is the end of day macro EOD.MC, which MUST be executed at or near midnight LST...or...after the last observation of one day and BEFORE the first observation of the new day. EOD provides backup copies of the day's 10A, 10B.DT and hourly wind files. After some additional file manipulation it will cause two copies of the MF1-10A to be printed at the PPM, via the program PR10A.SV. EOD should only be run at this time of day and never more than once!

Once EOD is carried out, observations for the new day may begin, but the previous day's data is not yet complete since the MF1-10B must still be compiled. This is accomplished via two additional programs which are driven by two other macros.

EOD.MC

MESSAGE DELETE OLDIOA OLDIOB XFER/A 108.DT OLD108/R PRINT OLDWINDS PRIOA.SV;PRIOA.SV RENAME XXXSAOS OLDIOA TYPE MSG1

P10B.MC

MESSAGE XTDSS MESSAGE

PRT10B.MC

NESSAGE PR10B.SV DELETE SAD.DT WXL.DT PRINT XXX108.DT XXX108.DT ARCFILES.SV TYPE MSG3

C10B.MC

MESSAGE XTDSS PRT10B.NC MESSAGE

Figure 4. End-Of-Day Macros

M. 104.2

11

Since some of the data required for the MF1-10B is beyond the scope of the SAO encoder, it must be entered manually into AFOS products to become available for electronic processing. The three products used for this are cccSADxxx (6 and 24 hour summaries), cccBEWxxx (beginning and ending of weather events) and ccc24Pxxx (log of hourly precipitation amounts). Information is entered into these products as needed to reflect the true occurrences of a day's weather. Figures 5 through 7 show the preformats for these products.

This data is extracted from the AFOS database and incorporated into the complete MF1-10B via two programs: XTDSS.SV, whose purpose is to construct RDOS files containing the SAD and BEW information, and PR10B.SV, which takes information from different sources and properly formats it into the MF1-10B replica.

standard of the automated replica an produces PR10A Meteorological Form 1-10A including all appropriate headings and The actual size of the form is as near as column alignment. physically possible to the standard, given the hardware available. The actual width of the form is about 1/2 inch greater that the standard but its length is identical, and yet it is capable of containing 75 lines of observations. (In order to maintain the uniform length, "blank" lines are output as part of the form whenever it is necessary to make up the difference between the actual number of observations in any one day and the number of observations possible on the form. These "blank" lines do contain printed characters in order to maintain column distinction throughout the form.) Dashed lines are printed to mark the top and bottom of the form to indicate where the paper must be torn or cut before it is archived locally or mailed to the National Climatic Center.

The program does little more than read and write data, one line at a time. The input file is the user's MF1-10A file (named xxxSAOS) in SYSZ and the output device is the Printer Plotter Module (PPM).

Processing begins by reading the local id from the site's AFOS SKEL file to retrieve the xxx in xxxSAOS. The output device is then opened and a form feed of 20 lines is output. This is to insure that the actual printing of data is accomplished on paper that has not dried out while sitting at or near the print mechanism of the PPM.

First a string of hyphen characters are output to mark the beginning of the form, next data transfer is accomplished by reading from the 10A file xxxSAOS and writing to the PPM until the end of the 10A file is encountered. If the 10A file contains less than 75 lines of data, the differing number of lines are then output as "blank" lines. If by chance the 10A contains more than 75 lines, the end of the first form is marked and a form feed is output. Then a new form, page two of the same day with all appropriate headings, is generated via the same process until the end of the 10A file is encountered. At that point the program will again form feed paper at the PPM and then terminate. See Figure 8 for a sample completed 10A.

XTDSS is executed via the P10B MACRO of the COARS end of day

TTAAOO	KILG 150926	SYNOPTIC OB	SERVATIONS		STATE		
	TIME PR	ECIP SHOW	SNOW	MAX MIN TEMP. TEM	OF P. GRND	SOIL TEMP.	
MID	TO C 3 C C 3 C C 3 C C 3 C C 3 C MID C				, c , c , c , c , c , c , c , c , c , c		
* * *	* * * * * * * * TIME LST C C C * * * * * * EN I I I I I GO	* STATION PRES STATION PRESSURE C J C J C J C J C J C J C J D OF DAY SUMMA TO END OF PAC SUMMARY OF D	SURE COMPL BAROGRAPH READING C J C J C J C J C J C J C J C J C J C J	HATIONS * * BAROGRAPH CORRECTIO C J C J C J NEXT PAGE. * E ENTERING I HT TO MIDNIGH	* * * * * * N • • • • •••• 1 1 1 ••••	* * * * * **>	c 3
24HR MAX TEMP	24HR 24HR PRECI MIN WATER TEMP EQUIN][][24HR P SNOWFALL UNMLTD INS.] [] REMARKS, NOTE	SNOW DEPTH C J C S AND MISC	PEAK WINI SPD KTS DIR JC J C ELLANEOUS PH	TIME LST I	WATER EQUIV (INS) []	
xuxuxx T	OT MINS OF SUN	TIME OF SUNRIS	E [] 8] PERCE] CHARA	TIME OF SUN	SET C UNSHINE C ET C	3 3 3 3	×.
EASTE	ST 1-MIN WND S		ASTEST MIL	EC IDIRECT	IONE 31	TIMEC	3
	CHECK - CLOCK	CORRECT TO NEA	REST MINU	TE AT; C	3		3
F 7							

Figure 5. Six-hourly and daily data preformat cccMCPSAD

13

T	TA	A00	KILG	100	0037																		
				15	DECI	NNIN		D END	ING	OF	EAT	HER	EVE	NTS	5 IN	I THE	E PR	OPER		LUMNS	5 1	!	
1	1	EN	TOP	TO	THE	END	OF	PAGE	TWO	BEF	ORE	ENT	ERIN	G <		VE	RY	MPOR	RTAN	4T x x	**	-	
*	*	ж,	EVEN	T	1110	21.0	-	TIME	BEG	AN			TI	ME	ENI	DED							
		-	EVEN		1			C	1	1				C		נ							
			NE.		ĩ			C	1	1				C	1]							
		-			ĩ			C		1				C		1							
		5			1			C		J				C		נ							
		L			ĩ			C		J				С		נ							
		5			ĩ			C		J				C		3							
		-			ī			C		1				C		3							
		-			ĩ			C		1				C]							
		5			ĩ			C		1				C		3							
		L			1			C		1				C		נ							
		5			ĩ			C		3				C		3							
		L C			1			C		1				C		3							
		2			ī			C		3				C		2							
		5			ī			C		J				C		1							
		č			1			C		3				C		1							
		r			J			C		1				L								C	3
		r			C			C		1				L		1						-	_
		2			1			C		1				L		1							
		r			3			C		3				C		1							
		r			J			C		נ				Ľ		-							
		c			1			C		J				5		1							
		ř			1			C		C				L		-							
		č			3			С		נ				5		-							
		Ē			J			Ľ		3				2		1	9						
		r			1			C		נ				5		1							
		r			3			C		נ				5		1							
		r			1			C		3				5		-							
		r			. 3			C		3				L		-							
		r			3			C		3				L		-							
		č			3			C		3				Ľ		1							
		r			3	í –		C		3				5		-							
		č			3	1		C		3				5		1							
		c				1		C		3				2		1							
		č			2	3		C		3				-		1							
		C			1	1		C		נ				-		i							
		c				נ		C		J				5		1							
		c			1	נ		C		3				Ē		i							
		C			- 1	נ		C]			1	TIM	FF	NDED							
			EVE	NT				TIM	E BE	GAN	500		TER	ING	1	1 *	* *					C]
	*	* *		1	117	TAB 1	TO E	ND OF	PAG	- BE	PUR	EEN	TER.										
			Figu	re	6.	Weat	her	log p	orefo	orma	at c	ccM(PBE	W									

J

14

TTAA88 KILG 188289

24 HOUR PRECIPITATION LOG

 $\begin{bmatrix} 00-01 \\ 01-02 \\ 02-03 \\ 03-04 \\ 04-05 \\ 05-06 \\ 05-06 \\ 05-06 \\ 05-06 \\ 06-07 \\ 05-06 \\ 05-06 \\ 06-07 \\ 05-06 \\ 05$

* * * * * ENTER HOURLY PRECIP AMOUNTS INCLUDING A DECIMAL POINT * * * * *

PLACE CURSOR HERE [] THEN STRIKE ENTER

C J PAGE Ø1

Figure 7. 24-hour precipitation preformat cccMCP24P

HATIONAL	LEATHER SERVICE	SURFACE LEATHER OBSERVATIONS	THU MAR 26 1987 STATION ELEVATION 80.8 FEET
TO CONVE	RT LST TO GHT ADD S HOURS SKY AND CEILING (HUNDREDS OF FEET) 3	I PREVAI ISEA I I ILINGI LEATHER & ILVL I IDEUI I VISIBIOBSTRUCTIONSIPRS ITTPIPT. I DI I ILITYI TO VISION IMBS IOF IOF IB-3 I 4 I 5 I 6 17 18 1 5	IALTII UIND INETRI REMARKS AND I RISPDICHAR-ISET.I SUPPLEMENTAL IOBSRI IGIKTSIACTERIINS.I CODED DATA IINTSI 0 1 101 11 12 1 13 1 15
SA 18851 SA 18158 SA 18258	M44 0VC M39 BKM M36 BKM	18 1 1361 491 461 10 18 1 1291 491 451 10 18 1 1291 491 451 10 18 1 1291 491 451 10 19 1 1221 491 451 10 19 1 1221 491 451 10 19 4 1 1221 491 461 10	i 1 101 1 993 ∕ 01500 15// 65 JFS i 1 001 1 991 JFS i 1 001 1 9091 JFS 5 051 1 9091/ 717 1500 (COR JFC
SA 18352 SA 18352 SA 18352 SA 18528 SA 18528 SA 18528 SA 18553 SA 18553 SA 18553 SA 18552 SA 11555 SA 11555 SA 11555 SA 18552 SA 185	JOSS JOSS JOSS JOSS HOR BERN HOR BERN </td <td>1 7 1 1 1191 491 471 13 1 7 1 1 191 491 471 13 1 7 1 1 191 491 471 13 1 7 1 1 191 491 471 13 1 7 1 1 191 491 461 13 1 1 1 191 401 461 13 1 1 1 1261 581 481 2 1 0 1 1 1291 581 481 2 1 0 1 1291 581 481 2 1441 2 13 3 14 1 1291 621 441 2 16 1 1291 621 441 2 16 1 1191 651 391 3 16 1 1191 651 391 3 16 1 1191 651 391 3 16<!--</td--><td>5 1 051 1 9881//717 1588 13FS 5 1 041 1 9881 13FS 6 1 1 9991 13FS 6 1 1 9991 13FS 7 1 41 1 9981 13FS 7 1 41 1 9981 13FS 7 1 41 1 9981 13FS 7 1 61 1 9921 1CS 7 1 11 1 9911/ 10S 1CS 9 1 151 1 9911/ 10S 1CS 9 1 151 1 9911/ 10S 1CS 9 1 121 1 9911/ 10S 1CS 1LC 10 1051 1 9071 11LC 1LC 1LC 10 1091 1 9071/ 503 1408 1RDM 10 1091 1 9071/ 503</td></td>	1 7 1 1 1191 491 471 13 1 7 1 1 191 491 471 13 1 7 1 1 191 491 471 13 1 7 1 1 191 491 471 13 1 7 1 1 191 491 461 13 1 1 1 191 401 461 13 1 1 1 1261 581 481 2 1 0 1 1 1291 581 481 2 1 0 1 1291 581 481 2 1441 2 13 3 14 1 1291 621 441 2 16 1 1291 621 441 2 16 1 1191 651 391 3 16 1 1191 651 391 3 16 1 1191 651 391 3 16 </td <td>5 1 051 1 9881//717 1588 13FS 5 1 041 1 9881 13FS 6 1 1 9991 13FS 6 1 1 9991 13FS 7 1 41 1 9981 13FS 7 1 41 1 9981 13FS 7 1 41 1 9981 13FS 7 1 61 1 9921 1CS 7 1 11 1 9911/ 10S 1CS 9 1 151 1 9911/ 10S 1CS 9 1 151 1 9911/ 10S 1CS 9 1 121 1 9911/ 10S 1CS 1LC 10 1051 1 9071 11LC 1LC 1LC 10 1091 1 9071/ 503 1408 1RDM 10 1091 1 9071/ 503</td>	5 1 051 1 9881//717 1588 13FS 5 1 041 1 9881 13FS 6 1 1 9991 13FS 6 1 1 9991 13FS 7 1 41 1 9981 13FS 7 1 41 1 9981 13FS 7 1 41 1 9981 13FS 7 1 61 1 9921 1CS 7 1 11 1 9911/ 10S 1CS 9 1 151 1 9911/ 10S 1CS 9 1 151 1 9911/ 10S 1CS 9 1 121 1 9911/ 10S 1CS 1LC 10 1051 1 9071 11LC 1LC 1LC 10 1091 1 9071/ 503 1408 1RDM 10 1091 1 9071/ 503

THU MAR 26 1987

Figure 8. Completed MF1-10A (reduced in size for publication) (Note corrected observation)

functions. Its purpose is to convert two manually produced AFOS database products into RDOS files in SYSZ. (Since all of the data needed by COARS will not always be available at the same time, a method of capturing some of the data had to be established. The RDOS files captured by XTDSS can be manipulated sometime in the future, while the AFOS products can be updated for the new day.) These files will be processed further when the complete MF1-10B is compiled and printed.

The first database product accessed by this program is cccSADxxx which contains the 6 hourly and summary of the day data; the equivalent of the standard 10B, columns 42 thru 50, 59 thru 65, 66 thru 73, 80 and 90. The second product accessed is cccBEWxxx, the beginning and ending of weather log; columns 82 thru 88 of the standard 10B.

Activity within the program begins by reading the SKEL file in order to formulate the database keynames that will be accessed. The output filenames are set within the program. The relationship of keyname to filename is:

cccSADxxx = SAD.DT ... and ... cccBEWxxx = WXL.DT

The .main portion of XTDSS simply forms the needed key/file names and provides to the user possible error conditions messages and a status message. The actual data transfer takes subroutine XT, which is called twice. (This routine is a modified version of subroutine XTPK authored in 1983.) The first call to this routine extracts the product cccSADxxx by placing each data field of input onto its own line of output. This is accomplished by converting each end of data field (octal 11) to a carriage return (octal 15). (Although the output file will contain lines of data, it is actually written as blocks of data.) The second call to this subroutine follows the same process as the first with one adjustment. If there are no weather events during a given day, the product cccBEWxxx should contain the word NONE as its first and only entry. During this second call to the routine, a check is made to see if the word NONE is present. If it is, then the output file (WXL.DT) is deleted from disk and the program ends. If NONE is not present, then processing continues in the same manner by placing each input field onto an output line.

PR10B is the next program executed (via PRT10B.MC) in producing daily weather records. It uses input from several disk files and one AFOS product in order to output a complete replica of Meterological Form 1-10B, with all appropriate headings, columns and column numbers. As with the 10A form, the length of the document is equivalent to the standard, the width is again slightly larger. The top and bottom of the form is marked by hyphen characters. The file generated by this program is titled xxx10B.DT, where xxx equals the three letter identifier of the local site.

This program makes use of FORTRAN standard READ/WRITEs using the alphanumeric (A) format. Since the data required for the 10B form

will always be of varying length and type, the A format was used because it will accept this differing data.

Processing within this program begins as with many of the others, by reading the SKEL to determine the site's identity in order to construct file and keynames. Next the output file is created and data transfer begins. The file 10B.DT, containing sky condition, temperatures, etc. is read in. The information is rearranged into its proper columns when output. A check is then made to see if hourly precipitation amounts exist from the AFOS product ccc24Pxxx. If they do, they are then output for the corresponding hourly period in column

40. Once the 10B.DT file is exhausted, a large portion of the file SAD.DT is read in, reformatted, and then output. At the proper location, a check is made for the existence of WXL.DT. If it is on disk, it is read, then output simultaneously with the remainder of the SAD.DT file. If the beginning and ending of weather log (WXL.DT) should contain more than 20 entries (the maximum number permitted on one page in order to maintain proper paper length) then a second page of the MF1-10B will be created. This second page will contain the station identifier information, the day/date group and then only the remainder of the weather log. Figure 9 shows a sample completed 10B.

PR10B.SV does provide to the user two pieces of automated data. The average sky cover, sunrise to sunset, and midnight to midnight, is computed and output by the program, freeing the observer from one more quality control error.

This program calls one subroutine, XTPK. Its purpose is to convert the AFOS product ccc24Pxxx (the hourly precipitation log) into an RDOS file.

Finally, PRT10B.MC calls the program ARCFILES to "archive" the day's files onto DP2. Each filename is given a two-character date extension. COARS will use up two floppies per month for this, so an entire year of data can be kept on a 24-floppy set.

If errors are found in the current 10B output from the data input in cccSADXXX, cccBEWxxx or ccc24Pxxx, the operator may correct these products and then run C10.MC. This invokes XTDSS again and then reruns PRT10B.MC. If 10B.DT is more than 1 day old, though, pen and ink corrections should be made to the printed forms.

Figure 10 is an COARS "flowchart" showing the observer's activity throughout the day.

III. Cautions and Restrictions

Once the COARS system is installed and in use, <u>all</u> observations must be entered into it to maintain proper records. A "local" mode is available to catch up with observations created and sent by other means during AFOS outages. Erroneous and subsequently corrected observations must still be crossed out by hand on the MF1-10 forms output by COARS. The forms should also be cut to size on the lines provided.

The end-of-day programs do not check the supplemental data entered.

IV. References

Brehm, F.: Fortran Utility Library - UTIL.LB, AFOS System Programming Note No.16.

Chiusane, D.: CFSTO, AFOS System Programming Note No.93.

National Weather Service. <u>Federal Meteorological Handbook #1 Surface</u> <u>Observations</u>. U.S. Department of Commerce, Washington D.C. February 1, 1982.

Schuster, M.: Background Programming with AFOS, AFOS System Programming Note No.90.

Sunkel, W.: The Topeka Library (TOP.LB), NWS CRCP No. 7

NOTE: Due to space limitations, COARS source code has not been included in this CP. Source code may be obtained from Eastern Region SSD or the AFOS Applications Library maintained by TDL. SURFACE LEATHER OBSERVATIONS

THU MAR 26 1987 STATION ELEVATION 80.8 FEET

NATIONAL LEATHER SERVICE

TO CONVERT LST TO GHT ADD 5 HOURS

														UNK					I NET	1
		•		ITOT	1				a	OUDS P	HD	OBSCUR	NG PHE		HI FOUR	TH	LAYER I	OPOIPRS	I 3HR	HRLY
INTATI	ONIDS	TID	EUIRE	LISKY	LOUR	ST LA	YER I	SEC	CHD	LAYER	SUNT	OHTI	WPE I H	GTITO	TI AMTI	TYPE	I HGTI	SKYITH	I CHG	I PCPt
IDDECC	I IBL	BIP	T. IHU	HICOV	ANTI	TYPE I	HGTI	AMT	TTPE	I Plat			1	1	1 1		1 1	1	1	Í .
IN	. 10	-	-	10	1 . 1			-	26	1 27.	28.1	29.1	30. 1 3	1.132	.1 33.1	34.	1 35.1	36.137	. 1 30.	1 48.
1 17.	. 11		9.126	. 121.	1 22.1	23. 1	24.1	23.												
							-		1	1	1 1	1	1	1	1 1		1 1	101 0	1.843	-
29.84	45 1 4	491	461 8	9118	1 18 1	50 1	H 191		i	1	1 1	1	. 1	1	1 1		1 1		-	1
29.8	25 1	491	451 8	161 B		50 1	M 361		i	1	1 1	1	1	1	1 1		1 1	81 7	1 850	
29.8	05 1	491	461 1	31 8		50	M 321		1	1	1 1	1	1	1	1 1		1 1	91	1.030	
129.7	95 1	491	471 3	31 3	1 9 1	SC I	M 311		1	1	1 1	L I	. 1	1	1 1			81	i	i
129.7	95 1	491	4/1 :	31 9	1 8 1	SC	m 271		1	1 .	1	1 1	1	1	1 1			101 3	1.821	
129.7	95 1	481	401 3	931 9	1 18 1	SC	IM 251		1	1	1	1 1	!		1 1		i	1 181	1	1
129.8	15 1	201	491	81178	1 18 1	SC	IM 221		1	1	1	1 1		1	1 1		i	1 11	1	1
129.8	35 1	231	491	691 1	1 11	SC	1 251		1	1	1		:				i	1 21 1	1.81	8 1
129.8	23 1	621	441	521 2	1 2 1	SC	1 351		1	1	!	!!			1 1		i	1 31	1	1
129.8	23 1	621	431	581 3	1 3 1	CU	1 441		1		!	: :			1 1		1	1 41	1	1
127.0	123 1	651	481	481 4	1 4 1	CU	1 441		1	1	-	: :		i	i i		1	1 71 8	1.83	81
129.0	95 1	651	391	381 7	1 7 1	SC	IE 581		1		1	: :	· · ·	i	1 1		1	1 71	1	1
129.7	85 1	641	381	381 7	171	SC	IE 581		-	1	:	i i	i	1	1 1		1	1 61	. !	1
129.7	775 1	641	371	371 6	1 6	I SC	IE 551		-		i	i i	1	1	1 1		1	1 31 3	5 1.01	
129.7	1 287	661	381	361 3	1 3	I SC	1 23		1	- i - i	1	1 1	1	1	1		1	1 21	-	:
129.7	785 1	651	371	351 2	1 2	I SC	1 53		1	i	1	1 1	1	1	1		!	1 81		
3129.8	815 1	611	381	421 0	1 0	SC	1 258		i	1	1	1 1	1	1	1				3 1.0.	1
3129.8	835 1	571	361	431 0			1 2.50	i	1	1	1	1 1	1	1	1				i	i
2129.1	855 1	561	361	471 0		:	:	i	1	1	1	1 1	!	1	1		:	1 81	3 1.8	151
2129.1	868 1	571	361	-		;	i -	1	1	1	1	1 1						1 81	1	1
4129.1	870 1	521	361	561 8		i	1	1	1	1	1	1 1					i	1 81	1	1
8129.	888 1	431	125	631 8		i	1	1	1	1	• 1	1 1								
								STR	TE	SYNOPTI	C 08	SERVATI	OHS	S	TATION P	RESS	URE COM	PUTATIC	MS	
		900		SNOL	SNOU	MAX	MIN	OF	50	1L			TIM		STATION		BARONET	ER	BARO	ETER
	IT	INC	HES	FALL	DEPTH	TEMP	TEM	GR	D TE	MP			IST	•	PRESSURE		READING		CORR	ECTIO
	42.		4.	45.	46.	47 .	48.	50.	56	•			59.		63.		64.		65.	
DT CI	8048			8		49	49						084	9	29.845		29.869		01	3
	0048	T		8		51	49						864	9	29.815		29.828		00	
	0648			8		28							125	3	29.795		29.803		+.81	
	1251	8		0			50						185	1	29.835		29.823	•		
	1850			0		87	17													
	MID			8		31														
							SU	TAR	Y OF	THE	DAY	MIDHIG	HT TO HI	DNIG	(1)			LEATHE	R	AND
																	OBSTRU	CTIONS	TO	VIS
				24								SKY	COVER		DIFE		TYPE		BEGAN	EN
			24-HI	24																8
-HR	24-H	R	24-HI	24		SNOU		PEA	K UI	Ch.	SL	INRISE	TO		FOULY		82.		83.	
-HR X.	24-H	R	24-HI PREC	R 24 IP SH R FA		SHOU DEP TH	SPE	PEA ED		TINE	SL	TO	TO	i i	EQUIV		82.		83.	
I-HR IX. IP.	24-Hi MIN. TEMP	R	24-HI PREC LIATEI EQUIT	24 1P SH R FA V. UH	ALL MLTD MS)	SHOU DEPTH (1HS)	SPE (KT	PEA ED	K UII DIREC TION	TIME	SU	TO TO UNSET	TO MIDNIG	IT I	EQUIV (1NS.) 88.		82.		83.	
-HR X. HP.	24-H MIN. TEMP (F)	R	24-HI PREC UATEI EQUIT	24 1P SH R FA V. UN	LL MLTD MS)	SHOU DEPTH (1HS) 78.	SPE (KT 71	PEA ED 8.)	K UII DIREC TION 72.	19 - TIME LST 73.	SL	INRISE TO UNSET 79.	TO MIDNIG	ат	EOUIV (1NS.) 88.		82.		83.	
-HR K. P.	24-H HIN. TEMP (F) 67.	R	24-HI PREC WATEL EQUIT (INS 60.	24 1P SN R FA V. UN .) (1	NLTD HS)	SHOU DEPTH (1HS) 78.	SPE (KT 71	PEA ED 5.)	K UII DIRECTION 72.	19 - TIME LST 73.	51 51	NRISE TO UNSET 79.	TO MIDNIG	чт 	EDU 1V (1HS.) 88.		82.		83.	
-HR X. HP.)	24-H MIN. TEMP (F) 67. 47	R	24-HI PREC LIATEI EQUII (INS 60.	24 IP SH R FA V. UN .) (1	04- LL NLTB NS) 9.	SNOU DEPTH (1HS) 78.	SPE (KT 71 26	PEA ED S.)	K UII DIRECTION 72.	19 - TIME LST 73.	51	INR ISE TO UNSET 79.	TO MIDNIGI 79.	ат 	EQUIV (INS.) 88.		82.		83.	
(-HR AX. ETP. 5.	24-H MIN. TEPP (F) 67. 47	R	24-HI PREC LATEI EQUIT (INS 60.	R 24 IP SH R FA V. UN .) (I 6	ARKS.	SNOU DEPTH (INS) 70. 8 NOTES	SPE (KT 71 26 AND MI	PEA ED S.)	K UII DIRECTION 72.	10 - TIME LST 73. 1285 US PHEN	SI	INRISE TO UNSET 79. S	HIDNIG TO MIDNIG 79.	4T	EOUIV (INS.) 80.		82.		83.	
(-HR AX. ETP. F) 5.	24-H MIN. TEMP (F) 67.	R	24-HI PREC UATEI EQUIT (INS 60. 90 90	24 IP SH R FA V. UN .) (I 6 .) REP TIME NUTES	VIL VIL TP VIS) VARKS. OF SU OF SU	SHOU DEPTH (INS) 78. 8 HOTES INRISE (SHINE SE	SPE (KT 71 26 AND H1 8557	PEA ED S.) SCEL TI PERC	K UII DIREC TION 72. NU LANEO IME OF CENT O	IZES	SI SI HOMEN T 182 IBLE HSET	NR ISE TO UNSET 78. 5 A 8 SUNSH II	HIDNIG TO MIDNIG 79.	4T	EQUIY (INS.) 80.		82.		83.	
I-HR IX. [1] 5.	24-H MIN. TEMP (F) 67.	TOTICH	24-HI PREC UATEI EQUIT (INS 60. 90 90 AL MI ARACI	24 IP SH R FA V. UN .) (I 6 . REP TIM HUTES TER OF	VARKS.	SNOU DEPTH (INS) 78. NOTES JNRISE (SHINE SE	SPE (KT 71 26 AND M1 8557	PEA ED S.) SCEL TI PERC CHAR	K UII DIRECTION 72. NU LANEO IME OF CENT O	ND - TIME LST 73. 1285 US PHEN SUNSET F POSS OF SUN	SI SI HOMEN T 182 IBLE HSET	INRISE TO UNSET 79. S S S UNSH II RECTIO	HIDHIG TO HIDHIG 79. 4	1T 	EQUIV (1NS.) 88.	.st	82.		83.	
FASTE	24-H MIN. TEIP (F) 67. 47		24-HI PREC UATEL EQUIT (INS 60. 90 90 AL MI ARACT HUTE	R 24 IP SH R FA V. UN .) (I G UN HUTES TER OF	VARKS.	SNOU DEPTH (INS) 78. NOTES INRISE (SHINE SE	SPE (KT 71 26 AND H1 8557	PEA ED S.) SCEL TT PERC CHAN	K UII DIRECTION 72. NU LANEO CENT OR RACTER	US PHEN SUNSE F POSS OF SUN	SI SI HOMEN T 182 IBLE HSET D I	INR ISE TO UNSET 79. 5 A 8 SUNSH II RECT IO	HIDHIG TO HIDHIG 79. 4	T 895	EQUIV (INS.) 80. 	.st	82.		83.	

Figure 9. Completed MF1-10B (reduced)

20

Computer assisted Observations And Recording System

Figure 10. Daily COARS activities.

21

ERCP #42 November 1987

COARS - SETTING UP

PART A: INFORMATION AND INSTALLATION

PROGRAM NAME: RVAL

۷.

AAL ID: REVISION NO .: 1.00

Creates an RDOS file RVAL.DT containing the local site's R PURPOSE: (pressure reduction ratio) values.

PROGRAM INFORMATION:

Maintenance Programmer: Development Programmer: Lawrence Cedrone Lawrence Cedrone Location: WSO ILG Location: WSO ILG Phone: (FTS) 487-6142 Phone: (FTS) 487-6142 Type: Standard, interactive Language: DG FORTRAN 1V/5.20 Revision Date: Date: 5/01/87 Running Time: 5-10 minutes, depending on operator speed Disk Space: 24 RDOS blocks Program 11 11 5 Data

PROGRAM REQUIREMENTS

Program Files:

Name RVAL.SV	<u>Disk Location</u> APPL1		<u>Comments</u>	
Data Files:				
Name	Disk Location	R/W W	<u>Comments</u> Table of R-values	

W

Name RVAL.DT

AFOS Products:

Comments

(permanent and write-protected)

ID none

LOAD LINE

RLDR RVAL <UTIL FORT>.LB

SYSZ

Action

PROGRAM INSTALLATION

1. SETUP.MC will move RVAL.SV from the floppy to APPL1 and create a link to it in the master partition.

The state

ERCP #42 November 1987

COARS - SETTING UP

PART B: EXECUTION AND ERROR CONDITIONS

PROGRAM NAME: RVAL

AAL ID: REVISION NO .: 1.00

PROGRAM EXECUTION:

1. At the Dasher, type RVAL (carriage return).

2. The program will give you the choice of creating a new RVAL.DT, editing an existing one or aborting the program. The abort option was included in case the operator realizes that the entire file can't be completed in one sitting. You cannot stop in the middle and add more later.

3. For the first two options, the program will prompt you to enter the data from the local WBAN Form 54-7.3 (Pressure Reduction Ratio Table). If you're creating a new file, it asks for the lowest and highest temperatures for which the table has an R-value. Then it asks for the <u>decimal</u> portion only of the R-value for each temperature within those bounds. If you're editing an existing RVAL.DT, it will ask which temperature has the R-value that needs correcting.

4. Once the table is complete, print or type a copy of the file RVAL.DT and check the values. If there are any errors, correct the file using RVAL's edit option.

5. If there are no errors, move RVAL.DT to APPL1 and create a link to it in SYSZ. RVAL.SV can be removed from the opertational disk. (It would be a good idea to make a backup copy of RVAL.DT on a floppy.)

ERROR CONDITIONS

Messages from ADM

Meaning

none

Dasher Messages

Meaning

none

ERCP #42 November 1987

COARS - TAKING OBSERVATIONS

PART A: INFORMATION AND INSTALLATION

PROGRAM NAME:				AAL ID: REVISION NO .:	
	SAO				2.20
	SAP1				1.00
	SESP SAOII				2.00

<u>PURPOSE:</u> The overall purpose of these programs is to create a properly formatted surface observation cccSA0xxx from the data entered into the product cccOS0xxx. The observed data is also recorded in several files for use in creating the day's MF1-10A and MF1-10B.

SAO reads the command line, assembles keynames for input and output products and determines the local time zone and the date/time groups (local and UTC). This information is written to the file SAFL. SAO then chains either to SAP1 or, if the ob is a single-element special, to SESP. Both programs read SAFL, compose the observation using the input data in cccOSOxxx, and store the ob (transmitting if required) if there are no serious errors. SAP1 also generates the upper portion of MF1-10B (columns 17-38). Both then chain to SAOII, which writes the completed ob to the Dasher and also maintains the 24-hour observation file in MF-10A format. Every three hours SAOII backs up the MF1-10A and B files on disk.

PROGRAM INFORMATION:

Development Programmer: Lawrence Cedrone Location: WSO ILG Phone: (FTS) 487-6142 Language: DG FORTRAN IV/5.20 Date: SAO.SV - 06/20/87 SAP1.SV - 06/15/87

SAO.SV - 06/20/87 SAP1.SV - 06/15/87 SESP.SV - 08/18/87 SAOII.SV - 05/01/87 Maintenance Programmer: Lawrence Cedrone Location: WSO ILG Phone: (FTS) 487-6142 Type: Chain Revision Date: SAO.SV (2.10) - 05/01/87 SAP1.SV (2.10)- 05/01/87

Running Time: 10-35 seconds depending on length and type of observation

Disk Space: Program 211 RDOS blocks Data 53 " max

PROGRAM REQUIREMENTS

Program Files:

Name SAO.SV SAP1.SV SESP.SV SAOII.SV	Disk Location APPL1 APPL1 APPL1 APPL1 APPL1		<u>Comments</u>
Data Files:			
Name SAFL RVAL.DT SAERR.TX SAOERRORS CCCSAOXXX SAXXX SAOSUPDAT HWND.DT LRMK.DT SPF.DT XXXSAOS 10B.DT	Disk Location SYSZ APPL1 APPL1 SYSZ SYSZ SYSZ SYSZ, USER1 SYSZ, USER1 SYSZ, USER1 SYSZ, USER1	R/W W/R R W W W/R W W/R W W/R R/W W	<u>Comments</u> passes data between 3 programs Local R-values (created w/RVAL) Canned error messages Error messages for particular run of SAO; product SAOERRORS Actual ob; product cccSAOxxx Actual ob in MF1-10A format Dewpoints; product SAOSUPDAT Hourly wind data Local remarks; written to MF1-10A Parameter file MF1-10A 24 hrs of MF1-10B cols 16-38 Headings of MF1-10A

AFOS Products:

LD cccMCPOSO cccOSOxxx cccSAOxxx SAOSUPDAT SAOERRORS	<u>Action</u> Msg Comp Msg Comp Store Store Store	<u>Comments</u> MUST be fields-only contains input SA data Actual ob output; alert Supplementary data; alert Error messages - <u>must</u> be alarmed at observer consol
SAUERRURS		alarmed at observer conserver

LOAD LINE

RLDR SAO ID LTZ MMHDR <TOP UTIL FORT>.LB RLDR SAP1 SAOMCP SKY SAERR SFCVS TWRVS WX TMP PRESS DWPT WND RVR REM1 REM2 REM3 APPRR ADDAT XTREM COPY NXLN W10B SAD RARV CITAP NUM < TOP BG UTIL FORT>.LB 17/C RLDR SESP SAOMCP CITAP COPY <BG UTIL FORT>.LB RLDR SAOII CORREM SPCS CITAP NEWDAY NWLN FLCPY TWARO CHK10A <BG UTIL FORT>.LB

PROGRAM INSTALLATION

1. SETUP.MC will install SAO.SV, SAP1.SV, SESP.SV, SAOII.SV and the necessary data files in APPL1 and create links to them in the master partition.

2. Add cccMCPOSO (1 version), cccOSOxxx (2 versions), SAOSUPDAT (8 versions) and SAOERRORS (8 versions) to the database. There are four types of the preformat available: one for stations that report both RVR and minutes of sunshine (file MCPOSPO01), one for those that report RVR only (MCPOS0002), one for those that report minutes of sunshine only (MCPOS0003) and one for those that report neither (MCPOS0004). Store the preformat appropriate for your station into cccMCPOSO (at an ADM type STORE:DPx:MCPOS000y cccMCPOSO, where x is the floppy drive number and y is the preformat number). Use the KEY: command to alarm SAOERRORS and alert cccSAOxxx and SAOSUPDAT at the observer's console.

3. Edit the file 10B.DT an an ADM to reflect local conditions and enter initial data. Change

day/date group	to current day/date
station name	to site name
elevation	to site elevation
conversion to UTC	to proper number of means

11.1.

Then, enter all data for the 24 hours previous to the hour you will be running SAO for the first time. Data must be right justified and the bar must always remain in column #78. See ERCP #42, Appendix B or the COARS User's Manual for editing instructions.

4. Make sure the R-value table has been created with RVAL.SV.

ERCP #42 November 1987

COARS - TAKING OBSERVATIONS

PART B: EXECUTION AND ERROR CONDITIONS

PROGRAM NAME:		AAL ID: REVISION	NO.:
			2.20
	SAO		2 20
	SAP1		2.20
	CECP		1.00
	SESF		2.00
	SAOLI		

PROGRAM EXECUTION:

1. The observed weather data should be entered in product cccOSOxxx using the preformat cccMCPOSO (M:OSO). Justification is not necessary; see ERCP #42, Appendix C, for full instructions.

2. Once the data is entered, start the ob creation process by running SAO:

RUN:SAO [/L,/C,/F,/S,/SC,/SL]

NORMAL OBSERVATION - Type RUN: SAO.

CORRECTION - To correct the previous observation sent, enter the correct data in cccOSOxxx (retaining the original time of observation) and type RUN:SAO/C. This will create, transmit and record a correction to the previous observation ("COR" in the observation, column 13 remark "COR hhmm" in MF1-10A).

LOCAL - For a local observation, type RUN:SAO/L. This will create and record an observation but not transmit it. This can be used to enter missed observations after an AFOS failure: enter each observation in cccOSOxxx and then run SAO/L, beginning with the earliest missed ob. The same procedure can be used if the system clock has been set wrong: process each observation again from the time the clock went wrong. (In this case you should also purge all copies of cccOSOxxx before restoring the observations.) If either problem extended past midnight, you will have to close out the first day with the usual end-of-day procedures and then begin entering the observations for the second day. See the COARS User's Manual for more detailed instructions. A wrong date will only cause problems on the first observation of the day; re-enter that ob and run SAO/L.

FORCE TRANSMIT - To force transmit an observation, type RUN:SAO/F. This is a failsafe in case COARS will not accept the observation but there really is no error. This does not stop the error checking, so the operator will still get the fatal error message.

SINGLE ELEMENT SPECIAL - Type RUN:SAO/S. Only the current weather and remarks parts of the preformat will be read and checked.

SINGLE ELEMENT SPECIAL CORRECTION - To correct the ob previously sent when it is a single element special, type RUN:SAO/SC.

SINGLE ELEMENT SPECIAL LOCAL - To enter but not transmit a single element special (for recovery - see LOCAL above), type RUN:SAO/SL.

3. If a fatal error occurs, edit ccc0S0xxx and rerun SAO. The aborted observation can be checked by displaying the file cccSA0xxx (DSP:cccSA0xxx) - this may indicate where the error is. If a non-fatal error occurs, the observation will be sent, but should be checked in case a correction is necessary. Remarks can sometimes cause problems.

The method described with the LOCAL switches above is preferred for data recovery. If it is not feasible, you can use E:F/10B.DT to enter <u>all</u> data up to the current hour. If the down time extends past midnight, you must enter all data for the first day, close out that day with the usual end-of-day macros, then enter the data for the next day. See ERCP #42, Appendix B or the COARS User's Manual.

If the observation type is a special or if the observation is a correction, the COARS generated observation will be encoded as type E, per AOD 12.00.

ERROR CONDITIONS

Messages from ADM	Meaning
RDG SYS FILE	Problem reading SKEL or ICE2.CM
RUN LINE	Error in run line
RDG PREFORMAT	Can't access ccc0S0xxx
TIME OF OB	Ob time not within +/-5 min of system clock
TYPE OF OB	Unknown ob type
TEMP MISSING	Temp missing from hourly or local
10A FILE CHECK DASHER	Can't open xxxSAOS
Dasher Messages	Meaning
UNABLE TO OBTAIN R VALUE SLP MISSING	No sea level pressure

ERROR ENCOUNTERED WHILE CREATING MF-10A FILE FOR NEW DAY... Can't read xxxSAOS

ERCP #42 November 1987.

COARS - RETREIVING SYNOPTIC DATA

PART A: INFORMATION AND INSTALLATION

PROGRAM NAME: WSM

AAL ID: REVISION NO .: 1.10

PURPOSE: WSM writes a copy of a synoptic observation into the MF1-10A file xxxSAOS. Stations that manually compose and transmit synoptic observations should run this program after each ob is sent (every six hours). Stations that do not record synoptic observations do not need this program.

PROGRAM INFORMATION:

Maintenance Programmer: Development Programmer: Lawrence Cedrone Lawrence Cedrone Location: WSO ILG Location: WSO ILG Phone: (FTS) 487-8280 Phone: (FTS) 487-8280 Type: Standard Language: DG FORTRAN 1V/5.20 Revision Date: 05/01/87 (1.00) Date: 09/23/87 Running Time: 15 seconds Disk Space: 14 RDOS blocks Program 0 extra - writes to existing xxxSAOS file Data

PROGRAM REQUIREMENTS

Program Files:

<u>Name</u> WSM.SV	Disk Location APPL1	<u>Comments</u>

Data Files:

Name	Disk Location	R/W
20A2WW	SYSZ	W
SKEL	SYSA	R

AFOS Products:

ID Action cccSSMxxx Read

LOAD LINE RLDR WSM <BG UTIL FORT>.LB <u>Comments</u> MF1-10A for ccc and xxx

<u>Comments</u> Local synoptic observation

PROGRAM INSTALLATION

1. SETUP.MC will install WSM.SV in APPL1 and create a link to it in the master partition.

Re annual

ERCP #42 November 1987

COARS - RETRIEVING SYNOPTIC OBSERVATIONS

PART B: EXECUTION AND ERROR CONDITIONS

PROGRAM NAME: WSM

AAL ID: REVISION NO.: 1.10

Meaning

Meaning

PROGRAM EXECUTION:

1. After the synoptic observation has been stored, type RUN:WSM at an ADM.

ERROR CONDITIONS

Messages from ADM

JOB WRITING SM ABORTED! ERROR:FILE 1/0 Could not extract SSM from the AFOS database. Re-store ob and re-run WSM.

Dasher Messages

none

ERCP #42 November 1987

COARS - END OF DAY

PART A: INFORMATION AND INSTALLATION

PROGRAM NAME: PRIOA

AAL ID: REVISION NO.: 1.00

<u>PURPOSE:</u> Prints out a copy of MF1-10A on the PPM as part of the end-of-day routine. (May be run at any time for copies of current or past MF1-10A's.) The copy is a close to the standard MF1-10A as the hardware allows (length identical, width about 1/2 inch larger) and can hold 75 lines of observations. If there are more than 75 lines, a second page is produced.

PROGRAM INFORMATION:

Development Programmer: Lawrence Cedrone Location: WSO ILG Phone: (FTS) 487-6142 Language: DG FORTRAN IV/5.20 Date: 05/01/87 Running Time: 22 seconds Disk Space: Program 27 RDOS blocks Data 10-12 RDOS blocks Maintenance Programmer: Lawrence Cedrone Location: WSO ILG Phone: (FTS) 487-6142 Type: Standard Revision Date:

PROGRAM REQUIREMENTS

Program Files:

Name	Disk Location		<u>Comments</u>
PR10A.SV EOD.MC	APPL1 APPL1		End-of-day macro
Data Files:			
<u>Name</u> xxxSAOS	Disk Location SYSZ,DP<2,3>	<u>R∕₩</u> R	<u>Comments</u> local MF1-10A file (current in SYSZ, old files on floppies)
OLD10A SKEL	SYSZ	R R	yesterday's MF1-10A to obtain local xxx
AFOS Products:			· · · · ·

ID Action

Comments

LOAD LINE RLDR PR10A <UTIL FORT>.LB

PROGRAM INSTALLATION

1. SETUP.MC will move PR10A.SV, EOD.MC and MSG1 to APPL1 and create a link to them from the master partition.

2. Edit the macro EOD.MC: change the XXX in XXXSAOS to the local site id.

ERCP #42 November 1987

COARS - END OF DAY

PART B: EXECUTION AND ERROR CONDITIONS

PROGRAM NAME: PRIOA

AAL ID: REVISION NO .: 1.00

PROGRAM EXECUTION:

1. PR10A is routinely executed by the end of day macro EOD.MC. <u>EOD should</u> only be run near midnight LST or before the first ob of the new day and then only once!

2. PR10A itself can be executed manually at any time to obtain a copy of the current or previous MF1-10A's. At an ADM, type

RUN:PR10A or RUN:PR10A/0 or RUN:PR10A/x/nn

Running the program with no switches prints out the current MF1-10A. Using the O (letter O) switch prints out yesterday's MF1-10A from the file OLD10A in SYSZ. To reprint an old 10A from a floppy, use 2 or 3 for x to indicate the drive where the floppy is and substitute the date of the data desired for nn. To print a 10A for the twelfth from a floppy in DP3, for example, type RUN:PR10A/3/12.

3. The program will formfeed 20 lines at the beginning to eject any dried-out PPM paper. <u>Cut the finished MF1-10A on the dashed lines to reduce</u> it to standard length before sending to NCDC or archiving locally.

ERROR CONDITIONS

Messages from ADM

Meaning

none

Dasher Messages

ERROR ENCOUNTERED WHILE PRINTING...

FILE DOES NOT EXIST ON THAT FLOPPY Meaning

PPM off or out of paper

No xxxSAOS file in drive indicated

ERCP #42 November 1987

COARS - END OF DAY

PART A: INFORMATION AND INSTALLATION

PROGRAM NAME: XTDSS

AAL ID: REVISION NO .: 1.00

PURPOSE: Converts cccSADxxx and cccBEWxxx to RDOS files SAD.DT and WXL.DT, respectively. (Program PR10B will use these files to create the MF1-10B.)

PROGRAM INFORMATION:

Development Programmer: Lawrence Cedrone Location: WSO ILG Phone: (FTS) 487-6142 Language: DG FORTRAN IV/5.20 Date: 5/1/87 Running Time: 10 seconds Disk Space: 27 RDOS blocks Program 11 2-4 " Data

Maintenance Programmer: Lawrence Cedrone Location: WSO ILG Phone: (FTS) 487-6142 Type: Standard Revision Date:

PROGRAM REQUIREMENTS

Program Files:

Name	Disk Location	Comments
XTDSS.SV P10.MC	APPL1 APPL1	Executing macro

Data Files:

Namo	Disk Location	R/W
SAD DT	SYSZ	W
WYI DT	SYSZ	W
SKEL	SYSA	R

AFOS Products:

ID	Action
CCCSADXXX	Read
CCCBEWXXX	Read
CCCMCPSAD	Msg Comp
CCCMCPBEW	Msg Comp

Comments				
CCCSADXXX	in	RDOS	file	form
CCCBEWXXX	in	RDOS	file	form

Comments six-hourly and daily summary data weather log (cols. 82-88 of 10B) MUST be fields-only 11 = 11

LOAD LINE

RLDR XTDSS XT <BG UTIL FORT>.LB

PROGRAM INSTALLATION

1. SETUP.MC will move XTDSS.SV and P10.MC to APPL1 and create a link to them in the master partition.

2. Add cccMCPSAD, cccMCPBEW, and four versions each of cccSADxxx and cccBEWxxx to the database. The MCP's must be set to fields-only. Store the files MCPSAD and MCPBEW into the preformats.

ERCP #42 November 1987

COARS - END OF DAY

PART B: EXECUTION AND ERROR CONDITIONS

PROGRAM NAME: XTDSS

AAL ID: REVISION NO.: 1.00

PROGRAM EXECUTION:

1. cccSADxxx and cccBEWxxx must be completely filled out before executing XTDSS. cccSADxxx holds the 6-hourly/synoptic data and the summary of the day. It should be started using M:SADxxx at 06Z, edited at each 6-hour ob thereafter with E:SADxxx, and completed with the summary data at midnight. cccBEWxxx data can be entered at any time of day. The BEW preformat can hold up to 23 events; if there are more, continue them in column 90 of cccSADxxx. If there are no events for the day, just create the BEW product with M:BEWxxx, tab below the word "NONE", and store.

2. XTDSS is executed by the P10 macro.

ERROR CONDITIONS

Messages from ADM

none

Dasher Messages

ERROR ENCOUNTERED WHILE READING SKEL FILE

ERROR ENCOUNTERED WHILE READING SUMMARY OF DAY PRODUCT...

ERROR ENCOUNTERED WHILE READING THE BEGIN-NING AND ENDING OF WEATHER PRODUCT... Meaning

Meaning

Could not open SKEL

Problem reading cccSADxxx, re-enter and re-run P10

Problem reading cccBEWxxx, re-enter and re-run P10

COARS - END OF DAY

PART A: INFORMATION AND INSTALLATION

PROGRAM NAME: PR10B

AAL ID: REVISION NO.: 1.00

<u>PURPOSE:</u> Outputs a copy of MF1-10B as a disk file. Like the MF1-10A, the form is slightly wider than standard and is marked with cutting lines for length and width. Besides assembling information from several files and the 24P product, PR10B calculates the average sky cover from sunrise to sunset and from midnight to midnight.

PROGRAM INFORMATION:

Development Programmer: Lawrence Cedrone Location: WSO ILG Phone: (FTS) 487-8280 Language: DG FORTRAN IV/5.20 Date: 5/1/87 Running Time: 30 seconds Disk Space: Program 44 RDOS blocks Data 8 " " Maintenance Programmer: Lawrence Cedrone Location: WSO ILG Phone: (FTS) 487-8280 Type: Standard Revision Date:

PROGRAM REQUIREMENTS

Program Files:

Name	Disk Location	<u>Comments</u>
PR10B.SV	APPL 1	
PRT10B.MC	APPL 1	Executing macro

Data Files:

Name	Disk Location	R/W	Comments
xxx10B.DT	SYSZ	W	10B form output
10B.DT	SYSZ	R	Stored day's obs
WXL.DT	SYSZ	R	Weather log
SAD.DT	SYSZ	R	Summary of day
OLD10B	SYSZ	W	Yesterday's 10B
WRKFILE	SYSZ	W/R	holds ccc24Pxxx
SKEL	SYSA	R	For local xxx

AFOS Products:

ccc24Pxxx cccMCP24P

Action R Msg Comp

Comments Hourly precip amounts MUST be fields-only

LOAD LINE

ID

RLDR PR10B XTPK <BG UTIL FORT>.LB

PROGRAM INSTALLATION

1. SETUP.MC will move PR10B.SV, PRT10B.MC and MSG3 to APPL1 and create links to them from SYSZ.

2. Add ccc24Pxxx (purge parameter 6 hours) and cccMCP24P (fields-only) to the database. Store the file MCP24P into the preformat.

3. Edit PRT10B.MC: change the XXX in XXX10B.DT to the local site id.

ERCP #42 November 1987

COARS - END OF DAY

PART B: EXECUTION AND ERROR CONDITIONS

PROGRAM NAME: PR10B

AAL ID: REVISION NO.: 1.00

PROGRAM EXECUTION:

1. If precipitation has occured, the product ccc24Pxxx must be created using M:24Pxxx after the raingauge chart has been worked up. If the chart has not been changed yet and all end-of-day processing up to PRT10B.MC has been done, COARS may be used to start the next days's observations but the previous day's 10B form cannot be generated.

2. PR10B.SV is run via the end of day macro PR10B.MC

ERROR CONDITIONS

Messages from ADM

Meaning

none

Dasher Messages

Meaning

PROCESSING OF MF10-B ABORTED... bad sunrise or sunset time
in file SAD.DT

ERCP #42 November 1987

ARCHIVING COARS DATA

PART A: INFORMATION AND INSTALLATION

PROGRAM NAME: ARCFILES

AAL ID: REVISION NO.: 1.10

<u>PURPOSE:</u> ARCFILES moves copies of xxxSAOS, xxx10B.DT and OLDWINDS (renaming it xxxWINDS) to DP2. The filenames are given 2-digit date extensions.

PROGRAM INFORMATION:

Development Programmer: Lawrence Cedrone Location: WSO ILG Phone: (FTS) 487-6142 Language: FORTRAN IV/5.20 Date: 09/26/87 Running Time: 20 seconds Disk Space: Program 30 RDOS blocks Data uses existing files Maintenance Programmer: Lawrence Cedrone Location: WSO ILG Phone: (FTS) 487-6142 Type: Standard Revision Date: 05/01/87 (1.00)

PROGRAM REQUIREMENTS

Program Files:

Name	Disk Location	Comments	
ARCFILES.SV	APPL 1		
PRT10B.MC	APPL 1	Executing macro	

Data Files:

Name	Disk Location	R/W	Comments	
XXXSAOS	SYSZ	R/W	Read from SYSZ,	written to DP2
xxx10B.DT	SYSZ	R/W	"	**
OLDWINDS	SYSZ	R/W	"	**

AFOS Products:

<u>ID</u> <u>Action</u>

Comments

LOAD LINE

RLDR ARCFILES MNTH SPCS CITAP WFLS <BG UTIL FORT>.LB

PROGRAM INSTALLATION

1. SETUP.MC will move ARCFILES.SV to APPL1 and create a link to it in SYSZ.

2. A set of 24 floppies will be needed to archive one year's worth of data.

ERCP #42 November 1987

ARCHIVING COARS DATA

PART B: EXECUTION AND ERROR CONDITIONS

PROGRAM NAME: ARCFILES.SV

AAL ID: REVISION NO .: 1.10

PROGRAM EXECUTION:

Normally, ARCFILES is executed by the PRT10B macro. If necessary, it can be executed separately by typing RUN:ARCFILES on an ADM or ARCFILES on the Dasher.

ARCFILES will fill two floppies per month; start new ones on the first and the sixteenth.

ERROR CONDITIONS

Messages from ADM

NO FLOPPY

CHECK DASHER

Dasher Messages

PROGRAM ARCFILES FAILED... NO FLOPPY IN DP2

PROGRAM ARCFILES FAILED DUE TO A PROBLEM WITH DP2 THE FLOPPY IN DP2 MAY BE FULL...OR THE FLOPPY OR THE DRIVE MAY BE DAMAGED

Meaning

See first Dasher message below

See second Dasher message below

Meaning

Insert floppy and rerun ARCFILES

Check drive/floppy. Rerun ARCFILES once problem is solved.

APPENDIX A

ERROR MESSAGES RETURNED BY THE SAO ENCODER OF COARS

The message returned in SAOERRORS will begin with one of the two lines below, depending on whether the error was fatal or not.

- * * * DUE TO THE FOLLOWING ERROR(S) SFC OB WAS NOT TRANSMITTED!
 - ! ! ! NON-FATAL ERROR(S) DETECTED SFC OB WAS TRANSMITTED!

FATAL ERRORS

Cloud Cover

One of the first four error messages is output whenever COARS finds errors while encoding the sky condition (errors 1-14). It indicates in which of the cloud layers the error occurred.

>ERRORS FOUND IN THE 1ST CLOUD LAYER....ERRORS FOUND IN THE 2ND CLOUD LAYER....ERRORS FOUND IN THE 3RD CLOUD LAYER....ERRORS FOUND IN THE 4TH CLOUD LAYER....

- 1. LAYER AMOUNT GREATER THAN 10!
- 2. SUMMATION AMOUNT GREATER THAN 10 /OR/ LESS THAN PREVIOUS SUMMATION!
- 3. LAYER AMOUNT EXCEEDS SUMMATION /OR/ SUM EXCEEDS TOTAL OF ALL LAYERS!
- 4. TOTAL OPAQUE LESS THAN PREVIOUS TOTAL OPAQUE /OR/ EXCEEDS SUMMATION!
- 5. INVALID TYPE OF CLOUD OR OBSCURATION!
- 6. NO CLOUDS RECORDED, BUT LAYER AMOUNT OR SUMMATION NOT EQUAL TO ZERO
- 7. CEILING DESIGNATOR NOT AN E...M.. OR WI
- 8. MORE THAN ONE CEILING DESIGNATOR!
- 9. UNNECESSARY CEILING DESIGNATOR / OR DESIGNATOR MISSING!
- 10. TOTAL OBSCURATION WITHOUT TOTAL OPAQUE CONDITION!
- 11. CLOUDS AT A HEIGHT EQUAL TO OR LESS THAN PREVIOUS LAYER!
- 12. CLOUDS RECORDED WITHOUT A HEIGHT / OR HEIGHT WITHOUT CLOUDS!
- 13. CLOUD HEIGHT NOT COMPATIBLE WITH CLOUD TYPE!
- 14. INVALID CLOUD HEIGHT!

(Frequently one error in sky condition may trigger more than one error message.)

A-1

Surface Visibility

15. INVALID VALUE ENTERED FOR SURFACE VISIBILITY!
16. INVALID VALUE ENTERED FOR TOWER VISIBILITY!
17. SURFACE VISIBILITY LESS THAN 7 MILES WITHOUT A WEATHER ENTRY!
18. VISIBILITY 7 MILES OR MORE, WITH OBSCURING PHENOMENON!

Weather and/or Obscuring Phenomena

19. UNKNOWN TYPE OF WEATHER!
 20. L, F, S, O WEATHER ENTRY RULE IN ERROR!
 21. HEAVY DRIZZLE OR HEAVY SNOW WITH VISIBILITY GREATER THAN 1/4 MILE!
 22. LGT DRZL OR LGT SNOW & VSBY LESS THAN 5/8 MI WITHOUT OB. PHENOM!
 23. VISIBILITY 7 MILES OR MORE, WITH OBSCURING PHENOMENON!
 24. MODERATE L OR MODERATE SNOW WITH VSBY GREATER THAN 1/2 MII
 25. ERROR IN ENTRY FOR TORNADO / OR FUNNEL CLOUD / OR WATER SPOUT

Temperature and/or Dewpoint

26. TEMPERATURE VALUE BEYOND ALLOWABLE EXTREMES! (-60 to +126)
27. TEMPERATURE TOO WARM FOR FREEZING PRECIPITATION! (>+35)
28. TEMPERATURE TOO COLD FOR LIQUID PRECIPITATION! (>+28)
29. TEMPERATURE NOT WITHIN ALLOWABLE RANGE FOR REPORTING SNOW! (-41 to +42)
30. TEMPERATURE NOT WITHIN ALLOWABLE RANGE FOR REPORTING ICE FOG! (-41 to +16)
31. TEMPERATURE NOT WITHIN ALLOWABLE RANGE FOR REPORTING ICE PELLETS! (+9 to +44)
32. TEMPERATURE NOT WITHIN ALLOWABLE RANGE FOR REPORTING ICE CRYSTALS! (-41 to +15)
33. DEW POINT VALUE IS BEYOND ALLOWABLE EXTREMES! (-60 to +90)
34. DEW POINT EXCEEDS TEMPERATURE!
35. TEMPERATURE / DEW POINT SPREAD IS TOO GREAT TO REPORT FOG! (>8F)

36. DEW POINT MISSING!

Pressure

37. PRESSURE VALUE IN ERROR! (must be 4 or 5 digits)

Wind

38. WIND DIRECTION IN ERROR! (must be between 00 and 36)
39. WIND SPEED TOO LOW TO BE REPORTING BLOWING PHENOMENA! (must be >9k+)
40. WIND CALM...SPEED OR DIRECTION IN ERROR!
41. WIND ENTRY IN ERROR!

Column 13 Remarks

42. SURFACE VSBY 1 MILE OR LESS ... RVR REMARK MISSING OR IN ERROR! 43. CB ENTERED AS A CLOUD TYPE ... CB REMARK MISSING! (need CB or T) 44. VARIABLE CEILING HEIGHT ENTERED ... VARIABILITY REMARK MISSING!
45. VARIABLE VISIBILITY ENTERED ... VARIABILITY REMARK MISSING!
46. THUNDER OCCURRING ... THUNDER REMARK MISSING!
47. HAIL OCCURRING ... HAIL REMARK MISSING! (hail stone size)

Additive Data

48. CLOUD CODE GROUP MISSING OR IN ERROR!

49. MINUTES OF SUNSHINE GROUP MISSING OR IN ERROR!

50. MAX / MIN ... OR 4 GROUP MISSING OR IN ERROR!

Specials

- 51. OBSERVATION SHOULD BE A SPECIAL, NEW OCCURRENCE OF CLOUDS BLO 1000 FT
- 52. OBSERVATION SHOULD BE A SPECIAL, CEILING CATEGORY (abv/blw 500, 1000, 3000 ft)
- 53. OBSERVATION SHOULD BE A SPECIAL, VISIBILITY CATEGORY! (abv/blw 1, 11/2, 2, 3 miles)

54. OBSERVATION SHOULD BE A SPECIAL, BEGINNING OR ENDING OF THUNDER! 55. OBSERVATION SHOULD BE A SPECIAL, BEGINNING OF SEVERE TSTM (T+) 56. OBSERVATION SHOULD BE A SPECIAL, BEGINNING OR ENDING OF FRZG RAIN! 57. OBSERVATION SHOULD BE A SPECIAL, BEGINNING OR ENDING OF FRZG DRZL! 58. OBSERVATION SHOULD BE A SPECIAL, BEGINNING OR ENDING OF HAIL! 59. OBSERVATION SHOULD BE A SPECIAL, BEGINNING OR ENDING OF ICE PELLETS 60. OBSERVATION SHOULD BE A SPECIAL, BEGINNING OR ENDING OF TORNADO! 61. OBSERVATION SHOULD BE A SPECIAL, BEGINNING OR ENDING OF FUNNEL CLD! 62. OBSERVATION SHOULD BE A SPECIAL, BEGINNING OR ENDING OF FUNNEL CLD!

NONFATAL ERRORS (except for #83 which is fatal)

Essential Remarks

63.	Remark	for	the	ending of	a thunderstorm not found!	
64.	Remark	for	the	beginning	of a thunderstorm not found!	
65.	Remark	for	the	beginning	of a severe thunderstorm not for	ound!
66.	Remark	for	the	ending of	freezing rain not found!	
67.	Remark	for	the	beginning	of freezing rain not found!	
68.	Remark	for	the	ending of	rain not found!	
69.	Remark	for	the	beginning	of rain not found!	
70.	Remark	for	the	ending of	drizzle not found!	
71.	Remark	for	the	beginning	of drizzle not found!	
72.	Remark	for	the	ending of	hail not found!	
73.	Remark	for	the	beginning	of hall not found!	
74.	Remark	for	the	ending sno	ow not found!	
75.	Remark	for	the	beginning	of snow not found!	
76.	Remark	for	the	ending of	ice pellets not found!	
77.	Remark	for	the	beginning	of ice pellets not found!	
78.	Remark	for	you	r current w	weather of tornado not found!	
79.	Remark	for	you	r current i	weather of funnel cloud not fou	nd!
80.	Remark	for	you	- current i	weather of water spout not foun	d!

81. Check your temperature, more than 10 degree change during past hour! 82. Check your dew point, more than 10 degree change during past hour! 83. Check your pressure, more than .100 inch change during past hour! *

* FATAL - If this pressure change did actually occur, run SAO with /F to force transmit the observation.

APPENDIX B: EDITING THE 10B.DT FILE

Since the file 10B.DT contains essential information for COARS and is also very <u>inflexible</u> in its structure, edit it with care. There are only two situations where the file must be edited: (1) installing the program and (2) restoring data after an AFOS outage (without running COARS repeatedly in local mode). Manual editing after initial setup is discouraged.

Figure B-1 shows a sample 10B.DT. The first seven lines of the file contain heading information. Note the station name in the upper left and the date in the upper right (for the headings on the 10A and 10B forms), the station elevation at the upper right (for pressure reduction), and the LST/GMT conversion value. When installing the program, all these must be changed for the local site.

The next 24 lines hold 24 hour's worth of data. The format for the data in the file is illustrated by the line for 0050 LST. Sky condition, temperature (also used for pressure reduction), dewpoint, relative humidity, station pressure, pressure tendency and pressure change are recorded for each hour (see legend). Each line should be considered a continuous string of characters - spaces only occur when the data does not completely fill its field. There are no spaces separating fields. The vertical bar must appear in column 78.

Each line of the file must always contain 78 visible characters (this plus the invisible carriage return and linefeed at the end of each line makes 80 total characters) and the file must always be 32 lines long. The file size will always be 2560 bytes. The vertical bar must always appear in column 78 (it lines up with the "T" in FEET for the station elevation).

Editing 10B.DT when installing the program

1. Start at an ADM with E:F/10B.DT and answer the questions ("Y" to overwrite). Figure B-2 shows the inital 10B.DT.

2. Replace the day/date group on line 1 with the current date. Each new character should go into the same column location as the old one.

3. Change "WSO WILMINGTON, DE" to the local station name.

4. Change the station elevation, making sure not to move the decimal point. The elevation may range from 0.0 to 9999.9 feet.

5. Change the LST/GMT conversion factor (number of hours) if necessary.

6. Now enter the temperature, dewpoint and station pressure for the 24 hours preceding the first observation you want to take using COARS.

All numbers should be right justified in their fields. Leading zeroes are not necessary but can be used if it makes entering the data easier. The station pressure values must follow the column alignment (decimal point under the "R").

7. After all the data is entered, double check that the vertical bar appears in column 78 of each line. Figure B-3 shows the file after the initial setup.

Restoring data after AFOS outage

It is preferrable to "catch up" by running COARS in the local mode for each observation missed, but this may not always be feasible. In this case, you must enter <u>all</u> data for the missed observations by hand: each cloud layer (broken down by cloud cover amount), 2-letter cloud identifiers, ceiling designators, cloud height, summation values, and total sky cover values. Also needed are the temperature, dewpoint, relative humidity, station pressure, pressure tendency and 3-hour pressure changes. At the end, recheck that the vertical bar is in column 78!

If the outage extended across local midnight, you must fill in the data for the first day, run the end-of-day procedures, and then continue the 10B.DT for the next day (not forgetting to change the day/date line).

This procedure does not fill in the xxxSAOS file, so MF-10A must exist in paper form.

Figure B-1:

KEY TO 108. DT DATA ARRANGEMENT

NATIONAL WEATHER SERVICE WILMINGTON, DE

MF1-108

THU MAR 26 1987 ; STATION ELEVATION 80.0 FEET

TO CONVERT LST TO GMT ADD 5 HOURS

		-							,	-			,			OTI		1.7							'
TIME	FIRS	T	1	SEC	UND				i .	IH	IRU				FUI	KIH		11	uru			1. 18	TA I	; 3H	IR;
LST I	LAYE	R	1	LAY	ER		1.	SM		LA	YER		SI	7;	LA	YER		10	VOP.	TMP	OP	RHIP	RESI	TICH	16;
00511	(XIAAAAA	IMK	! !X	MAA	HAA	*1!	1 1	55	XXX	AA	AAM	11	15:	XX	AA	AAA	M!!	17	100	###	\$\$ \$	88 22	. 1.1.1	? . 00	PP:
171517	SSC	M.	39				.												3 3	49	45	8629	825		: ;
122512	der	m	34				1								1				9 9	49	46	8929	505	1.	1
0750	der	L	-	-																110	47	9700	704	7 13=	101
0302	Jac		71																	10	17	0100	705		
8438	-150	17	24					1												171	71	7.54	705		
6226	SSC	17	-1					1										1.	9.9	1 20	40			1	
0653	IESC	M	25					1										H	616	26	41	8929	812	3. 62	- 61 ;
075H	I ASC .	M	22									1.						μ	616	53	48	8329	. 835		;
0853	1 CUFRF		25	ASC		F	50	6	3	15		120			CI		25	61	616	58	48	6929	1.825		;
0953	ASC	11.	35				- 1												22	62	44	5229	1.825	1.01	101
1052	JCU		44									1							3 3	62	43	5029	2.825		;
1150	JULI	11.	1.1																4 4	65	40	4000	1. 805		;
1257	ter	L	50																1 1	65	39	7500	795	\$ 17.	317 !
1200	100	H	3.1																4 4	1 - 7	7.4	7.120	0.070		1
1229	JHC.		76	1															2 3	100	27	700	0.000		;
1451	340		ere.	101		Ľ	:26	4											4 4	101	30	3.4	. 708	1 -	,
1552	AAC	11	96	901		F1	256	9			. 1								9 8	59	32	362	1.946	51.06	10
1652	AAC	11	90	ACI		E.	200	6											ଶ ମ	57	24	2823	7.926		;
1751	AAC	1	85	ACI			206	8				1			1				87	54	27	352	7.900		;
1850	SAC		SI	11.T			PAR	9			1						1		9 8	51	28	4129	2: 906	6.04	10:
1050	1 dar		74			I٢									1			11	111	54	34	5429	9 991		!
2050	1000					11						1				11		1,	111	56	117	6.00	9 890		1
2030	ider	1																17		140	30	970	9 990	a a	101
2136	lept .	E					1								1				111	5.1	13	040	0 020	9.01	1 21 3
2251	resc	1	23	1								1						1.	916	1 36	19	000	2.000		1
2351	esc	M	45	450			OU	46						1_				1	616	1.43	40	0.4	2.004	1	_ !
IF M	ANUALLY	'E	DIT	ING	. F	LA	<i>ice</i>	0	URS	UR	? TO	R	IG	HT	UF	;	UN	TH	15	LINE	BEI	FURE	ENTE	RINC	

LEGEND TO LINE BEGINNING WITH TIME OF 00##

##	- LOCAL STANDARD TIME OF OBSERVATION
XX	- TENTHS OF SKY COVER (REPEATES 4 TIMES FOR 4 POSSIBLE LAYERS
AAAAA	- CLOUD TYPE IDENTIFIER (UP TO 5 LETTERS - CUFRA/STFRA)
M	- CEILING DESIGNATOR
1.1.1	- CLOUD HEIGHT
SS	- SUMMATION AMOUNT (FROM THAT CLOUD LAYER AND BELOW)
TT	- TOTAL SKY COVER
00	- TOTAL OPAQUE SKY COVER
### \$\$\$ &&& %% %% .%% @@@	- 3 CHARACTER TEMPERATURE FIELD - 3 CHARACTER DEWPOINT FIELD - 3 CHARACTER RELATIVE HUMIDITY FIELD - 6 CHARACTER STATION PRESSURE FIELD - PRESSURE TENDENCY INDICATOR - 3 HOUR PRESSURE CHANGE

Figure B-2 - BLANK 108.07 - FOR INITIAL SYSTEM SETUP

NATIONAL WEATHER SE	RUICE	MF1-108		THU MAR	26	19	87
WILMINGTON, DE			STATION	ELEVATION	80.	0	FEE

TO CONVERT LST TO GMT ADD 5 HOURS

TIME! FIRST ISECON	ND I I THI	IRD	FORTH LTOT	01 1 1	ISTA I ISHI	21
IST ! LAYER ILAYER	R ISMI LAY	YER ISMI	LAYER ICUO	PITMPIOPIRH	IFRESITICH	51
RR##XXAAAAAAM!!!XXAAAA	AAM!!!SSXXAAAA	AAM!!!SSXX	AAAAAM!!!TTF	P ###\$\$\$	7.7 7.7.7.	;
A15A				***\$\$\$	1.1 1.1.1.	;
0250				###\$\$\$	1.1 1.1.1.	;
9759	÷.			###\$\$\$	1.1. 1.1.1.	;
9459				###\$\$\$	1.1. 1.1.1.	,
0550				###\$\$\$	7.7 7.7.7.	1
0650				###\$\$\$	1.1 1.1.1.	
9759				###\$\$\$	1.1. 1.1.1.	i
0950				###\$\$\$	1.1. 1.1.1.	
0050				###\$\$\$	12. 1.1.1.	,
1050				###\$\$\$	7.7 7.7.7.	i
1150				###\$\$\$	1.1. 1.1.1.	;
1250				###\$\$\$	7.7. 7.7.7.	;
1750				###\$\$\$	7.7. 7.7.7.	;
1330				###\$\$\$	7.7. 7.7.7.	;
1430				******	22 222	
1000				###\$\$\$	22 222	
1650				******	22 222	
1750				******	22 222	-
1850				******	22 222	1
1950				******	22 222	1
2050				******	22 222	
2150				******	····	1
2250				****	22 222	,
2350		TO OTCUT	OF I ON THIS	THE DEENS	E ENTERINE	1
TE MANUALLY EDITING.	PLACE CURSUR	IU KIGHI	UP I UN IMIS	LINE DEFUR	E ENIERING	1

NATIONAL WEATHER SERVIC WILMINGTON, DE	E MF1-10B	THU MAR 26 1987 ; STATION ELEVATION 80.0 FEET
TO CONVERT LST TO GNT A	OD 5 HQURS	
TIME: FIRST :SECOND LST : LAYER :LAYER 0051 0150 0250 0352 0450 0530 0653 :CUFRA 25 :ISC 0751 0853 0953 1052 1150 1252 1353 1451 1552 1652 1751 1850 1950 2050 2150	THIRO FORTH SMI LAYER SMI LAYER 35 2 4AC E120 6 4CI	T0T01 STA 3HR CUOP TMP 0P RH PRES T CHG 49 46 29.845 49 45 29.825 49 46 29.805 49 47 29.795 49 47 29.795 49 47 29.795 48 46 29.795 58 48 29.8153.020 53 48 29.835 58 48 29.825 62 44 29.825 62 44 29.825 62 43 29.825 63 40 29.805 64 35 30.000 63 34 29.970 51 28 29.900 51 28 29.900 51 28 29.900 50 34 29.900 50 40 29.890
2251 2351 16 Manually EDITING PL	ARE RUPSOD TO DIENT OF '	50 46 - 29.860 49 46 - 29.860 20 THIS LINE REEDRE ENTERING
IF HANDALLI EVILING: FL	ACE COROUR IN RIGHT OF 1 (IN INTO LINE DEFUKE ENTERING ;

- 108.0T - AFTER INTIAL SETUP

Figure B-3

THIS IS HOW THE TEMP, DEWPOINT AND STATION PRESSURE SHOULD APPEAR IN THE 10B OT FILE AFTER SET-UP AND BEFORE USING THE SAO PROGRAM FOR THE FIRST TIME.

DON'T FORGET TO CHANGE THE DAY/DATE LINE; THE STATION ELEVA-TION AND IF NECESSARY; THE LST TO GMT CONVERSION.

! ! NOTE: THE LINE BEGINNING WITH 0653 IS AN EXAMPLE OF HOW ONE LINE OF THE FILE MAY LOOK AFTER COMPLETING A 3/6 HOURLY OBSERVATION. (SEE CHAPTER 3 OF USERS MANUAL FOR DETAILS ON MANUALLY ENTERING CLOUD LAYER INFORMATION ?! !

APPENDIX C: HOW TO ENTER OBSERVATIONS

To enter data for the SAO program, type M:OSOxxx at an ADM (xxx is the local id). Fill out the header block (addressee must be 0001), tab to the bottom and hit ENTER. The following single page preformat will appear. (The numbers in the fields do not appear in the actual preformat, they are just labels for the explanations in this Appendix.)

ccc0\$0xxx						
OBS TYPE [1]	LOW LYR AMT [2]	AMT OPQ [3]	CLD TYPE [4]	CIG DSGNTR [5]	CLD HGT [6]	
NXT LYR AMT [] [] [] SFC TWR VSBY VSBY [7] [8]	SUMMATION [] [] [] WEATHER / OF [9	TOT OPQ [] [] [] SSTRUCTIONS]	CLD TYPE [] [] [] TEMP DRY/1 [10	CIG DSGNTR [] [] [] [] DWPNT B WET/B] [11] [CLD HGT [] [] [] WIND 12]	
ONH/STA PRES [13] [[RVR REMARK 14] [ADI	15 DITIONAL REP	OTHER REMA	RKS		
•••••		ADDITIVE	DATA		•••••	
3/6 HR CLOU PRECIP CODE [17 A] 1[E XTRAREMARKS[D MINUTES OF SUNSHINE 3] 98[#C#] 90	WATER EQUIVALENT 2[D] 903[1 18	SNO DEP 904[E]	W 24 HR TH PREC 904[E]2[F	MAX/MI CIP TEMP] 4[G	[N]]
[19]	[20]	PLACE CURS	FOR HERE [21] AND STRIKE H	INTER	[]

IMPORTANT: The SAO program will bypass any leading spaces in the data fields, so the data does not have to be left-justified (except for remarks). A one-digit temperature can appear in the rightmost, leftmost or center positions in the temperature field.

In the explanations that follow, paragraph numbers correspond to the labeled fields in the preformat above.

C-1

- 1. OBS TYPE = Type of observation. Enter as applicable: SA, RS, SP or L.
- 2. LOW LYR AMT = Lowest layer amount. Enter the amount of sky covered by the lowest observed cloud layer. (0 10). NOTE: If sky is clear, no need to enter zeros in 1st cloud layer line: just leave the cloud field blank and make your first entry at sfc vsby. If zero tenths of any cloud type is present, it is necessary to enter zero tenths of cloud, type and height.
- 3. AMT OPQ = Amount opaque. Enter the amount of the lowest layer that is opaque. (0 10).
- 4. CLD TYPE = Cloud type. This field is large enough to hold the five letter abbreviation for STFRA and CUFRA as well as the standard two letter abbreviations of all other cloud types.
- 5. CIG DSGNTR = Ceiling Designator. Enter, as needed, the single letter identifier that defines how ceiling height was determined. (Table A3-12 FMH1).
- 6. CLD HGT = Cloud height. Enter the numeric value of the cloud height.

* * * * Do not enter leading zeros * * * *

900 feet is entered as 9 1500 feet is entered as 15 25000 feet is entered as 250

- 7. SFC VSBY = Surface visibility. Enter the appropriate value for prevailing visibility. Use values from FMH1 Table A3-2.
- 8. TWR VSBY = Tower visibility. Enter as needed the appropriate value for tower visibility from FMH1 Table A3-2. Program will insert correct visibility in the SAO and will include the appropriate remark.
- 9. WEATHER / OBSTRUCTIONS = Weather and/or obstructions to vision. Enter the contractions in accordance with FMH1 Table A3-3 defining the event(s) occurring at the time of observation.
- 10. TEMP DRY/B = Temperature or dry bulb reading. Enter the observed temperature. If the Hygro is inoperative, enter the dry bulb reading to include a decimal point and a tenths digit.

EXAMPLE: Hygro OK Temp = 77.3 enter 77

Hygro OUT Dry bulb = 77.3 enter 77.3

11. DWPNT WET/B = Dew point or wet bulb reading. Enter the observed dew point temperature. If Hygro is inoperative, enter the wet bulb reading to the nearest tenth of a degree. The program will compute dew point from the temp and wet bulb entries.

EXAMPLE:	Dew Cell C	DK.	Dew point = -	10.7	enter	-11 .
	Dew Cell C	TUC	Wet Bulb = -	10.7	enter	-10.7

C-2

If entries for both fields (10 and 11) include a decimal point, the program will interpret the values to be dry bulb and wet bulb. It will then compute the dew point value for your observation.

- 12. WIND = Wind. Enter the observed wind plus any character in accordance with FMH1.
- 13. QNH/STA PRESS = Altimeter setting or station pressure. Enter the pressure reading normally used at your station. The value that is entered MUST be the complete pressure reading.
 - A. ALTIMETER SETTING is entered as two digits, a decimal point, and TWO decimal digits. ie: 29.92 When ALTIMETER is entered, the program will automatically compute station pressure and sea level pressure.
 - B. STATION PRESSURE is entered as two digits, a decimal point and THREE decimal digits. ie: 29.875 When STATION PRESSURE is entered, the program will automatically compute sea level pressure and altimeter setting.
- 14. RVR REMARK = Runway visual range remark. Enter if prevailing surface visibility is 1 mile or less. If your station does not transmit RVR data, this field of the preformat MUST be filled with number symbols. "#"
- 15. OTHER REMARKS = Any column 13 remarks in accordance with FMH1. A total of one and a half lines of ADM screen are available for remarks. Remarks MUST begin in the first field and can then extend into the second field.

Any remarks not routinely transmitted must be placed inside a pair of parenthesis; eg., (AIRCRAFT MISHAP). Remarks inside parenthesis will not be transmitted, but they will be included in the observation when it is written to the 10A form.

Include beginning and ending times significant weather events and precipitation. IE: TB12 RB13E23SB33, etc.

NOTE: The SAO program will generate a few remarks on it's own, based on data already entered into the preformat fields. Therefore, the following remarks are NOT to be entered by the observer.

- A. PARTIAL OBSCURATION REMARK. If, for example, within the sky condition entry, 1 tenth of sky is covered by fog, the program will output a -X as part of the sky condition and F1 as a remark.
- B. SURFACE or TOWER VISIBILITY REMARK. If values are entered for both surface and tower visibility, the program will place the lower value into the body of the observation as the prevailing visibility, and then place the other value into a correctly formatted col 13 remark.

Example: SFC VSBY = 11/2, TWR VSBY = 7/8 7/8 will be transmitted as prevailing vsby, SFC VSBY 11/2 will be transmitted in remarks.

- C A PRESSURE RISING RAPIDLY or PRESSURE FALLING RAPIDLY remark will automatically be added to an SA or RS, based on the previous hourly. However, if either pressure change remark is required in a SPecial, then the observer must include the remark in the proper remark field of the preformat.
- 17 ADDITIVE DATA NOTE The APP group is automatically computed and formatted by the SAO program for all the 3/6 hourly observations
 - A. 3/6 HR PRECIP = Enter the appropriate precipitation amount. This entry is in the form currently used for col 13. A tenth of an inch would be entered as 10, an hundredth as 01, one and a half as 50 ONE.

ALL OTHER ADDITIVE DATA IS TO BE ENTERED IN ACCORDANCE WITH FMH-1.

- B. CLOUD CODE GROUP. Enter the appropriate code numbers identifying the observed clouds. Do not enter the 1 to identify the group, since it is already in the program. DO enter all three figures, including 0's or /'s as appropriate.
- C. MINUTES OF SUNSHINE. Enter at 08Z if appropriate. No need to enter the group identifier 98. If your site does not transmit this data, this field of the preformat must be filled with number symbols **###**.
- D. WATER EQUIVALENT. Enter the encoded value(s) as needed at 18Z. Again, the group identifiers are already in place.
- E. SNOW DEPTH. Encode and enter as needed on 3 and 6 hourlies.
- F. 24 HOUR PRECIPITATION. Encode and enter as needed at 122 or as required at your station. A 24 hour precip amount of 15 hundredths would be entered as 0015. The 2 identifier is already in place.
- G. MAX/MIN. Enter the appropriate value as required at your station. If your site transmits only a maximum, or only a minimum temperature in the 6 hourly observation, then only enter one value. It will be encoded into the observation as a max or min. If your site normally transmits a 4 group in the 6 hourly observation, then enter the two appropriate values (Max and Min). A completely encoded 4 group will be generated by the program.

NOTE No quality control checks are made on the additive data. The observer must assure correct data entry!

- 18. XTRA REMARKS = Miscellaneous Remarks. Use this field to enter miscellaneous data, such as; Tide remarks, City temperatures and/or RADAT information.
- 19. Z TIME OF OB = Time of observation in Universal Coordinated Time. Enter the 4 digit value representing the official UTC of the observation.

- 20. OBSRVR INITS = Observers initials. Enter the 2 or 3 characters that identify the observer.
- 21. If needed, tab cursor to PLACE HERE field, then strike enter key.

Once the product cocosococ is stored, run the program:

RUN: SAO

(See Part V for variations on the RUN:SAO command line.)

- NOTE 1: If the observation is a SP, there is no need to clear the temp/dew point fields, the program ignores these fields when the ob type is a SP.
- NOTE 2: Moving the cursor through the OSO preformat can be accomplished several ways.

Use the TAB key for moving from field to field across the screen.

Use the RETURN key to bypass a complete line when certain entries are not needed.

At times the ARROW keys are useful for positioning the cursor.

Once you become familiar with the preformat, you'll discover which method is most efficient for YOU when entering the necessary data.

APPENDIX D: HOW TO ENTER SUPPLEMENTAL DATA

The additional data needed to complete the MF1-10B must be entered separately using three preformats. This should be the first task accomplished on each day's midnight shift, before starting the end-of-day macros.

Product cccSADxxx is used to record synoptic or 6-hourly data as well as the summary of the day information (MF1-10B columns 42-50, 56, 59, 63-65 and columns 66-73, 78-80 and 90).

Product cccBEWxxx is used to record the type and beginning and ending of weather events (MF1-10B columns 82-88). The preformat is large enough to accomodate 23 separate events but falls short of holding the 36 possible entries allowed for on the paper 10B. If more than 23 entries are needed on any given day they MUST be continued in the column 90 section of cccSADxxx.

Product ccc24Pxxx is used to log hourly precipitation amounts (MF1-10B column 40). If rainfall occurs during the day, this product must be completed BEFORE the MF1-10B is printed on the PPM.

COCHEP

· · · · ·		SYNOPTIC OBS	ERVATIONS		-	
) I	IIME PRECIP	SNOW SNO FALL DEF	W MAX TH TEMP.	MIN TEMP.	OF GRND	SOIL TEMP.
MID TO [[[[] []] []] []] [] MID []					
* * * * * * *	* * * * * * * * * ST TIME S LST P [] [[] [[] [[] [ATION PRESSUR TATION BA RESSURE RE] [] [] [] [] [E COMPUTATION ROGRAPH BAI ADING COI] [] [] [] [] [S * * * * ROGRAPH RRECTION]]]]	* * * * *	
	# # END OF DAY	Summary IS O Of Page 2 Bef	N NEXT PAGE. ORE ENTERING	* * * * * - 1 1-1 1 -	>	, []
24HR 24HR MAX MIN TEMP TEMP [] [SUMMARY 24HR 24H PRECIP SNO WATER UNM EQUIV INS] [] [REMARKS, NO	OF DAY (MIDN R WFALL LTD SNOW DEPTH] [] IES AND MISCE	IGHT TO MIDNIC PEAK WIN SPD KTS DIR [][][] LLANEOUS PHENC	HT) TIME LST [] MENA	WATER EQUIV (INS) []	
***** U MUST TOT CHAR	ENTER TIME OF S MINS OF SUNSHIN VACTER OF SUNRIS	UNRISE []] E []] E []]	and TIME OF PERCENT OF PSE CHARACTER OF S	SUNSET AL SUNSHIN SUNSET [[] * E []]	****
FASTEST 1-MIN	WIND SPD []M	PH OR FASTEST	MILE [] [IRECTION [] TIME	[]]
TIME CHECK -	CLOCK CORRECT T	O NEAREST MIN	UTE AT: []]]]]

D-2

For the 06Z observation. call up the sad preformat with M:SADxxx. Tab through the header page. ensuring that the addressee is 000 before striking enter.

The two page preformat will come up on the screen.

Enter the data normally recorded at your site for each appropriate field. Stations in the Eastern Standard time zone will enter data into two lines of the synoptic portion of the preformat (MID-00## and 00##).

At subsequent 6 hourlies (12 18. & 00Z) call up the sad preformat in the edit mode (E:SADxxx). Be certain the addressee is 000 before continuing. While in the edit mode, all previously recorded data of the current day will be displayed. Tab to the appropriate line(s) and make your entries: include time checks and any column 90 remarks on page 2. Again be certain to go to the end of page 2 before entering.

At midnight (LST) close out the day's record by again calling up the sad in the edit mode (E:SADxxx). Proceed with entering the "MID" synoptic portion, then complete the summary of the day on page 2.

Beginning and Ending of Weather Log

Data may be entered into the beginning-and-ending-of-weather-log at any time during the calendar day. It is imperative that this product BE entered daily so that valid information is always in the "current" version. The COARS software is going to look at only 1 version of this log, so the current version of the log must contain only today's weather events. not yesterdays. With this in mind, please note that the preformat message contains the word NONE as its first entry. On days when there are no weather events, process the log by simply placing the cursor beneath the word "NONE" and strike enter.

A portion of the preformat follows:

CCCMCPBEW

! ! ENTER THE BEGINNING AND ENDING OF WEATHER EVENTS IN THE PROPER COLUMNS ! !

EVENT		TIME	BEGAN	TIME ENDED	
NONE]	[1		
[1	[]	[]	
[]	[]	[]	. EIC.

... IF ADDITIONAL ENTRIES ARE NEEDED, PLACE THEM COLUMN 90 OF THE SUMMARY OF THE DAY PRODUCT CCCSADXXX...

Data entry for weather log:

For first entry of the day call up product using M:BENDOOK

Insure that addressee is 000 ... tab through header page and strike enter.

Replace the word "NONE" with the appropriate event ... enter beginning using LST.

With the cursor in any blank field, enter the product.

Subsequent events for the same day are entered by calling up the preformat using the edit mode...E:BEWxxx and by placing the proper information into the appropriate column(s).

If they were NO weather events for a particular day this product must still be generated at the end of the day. Simply call up the product using M:BEWxxx... tab through the header page, place the cursor in any field BELOW the word "NONE" and strike enter.

24 HOUR PRECIPITATION LOG

CCCMCP24P

* * * * * ENTER HOURLY PRECIP AMOUNTS INCLUDING A DECIMAL POINT * * * * *

Data entry for precipitation log:

Generate this product each day in which a precipitation event occurred. If precipitation did not occur during the calendar day, by-pass this product!

If precipitation did occur, complete this preformat AFTER working up the rain gage chart. Fulfilling the Weather Service requirement of changing charts daily after a rainfall event provides the data needed for this product. But since this product is called for at the beginning of a midshift its quite possible that the chart for the day just ended has not yet been changed. If this is the case and if you do not intend to change the chart during the mid shift, advise the upcoming day shift personnel that the chart MUST be changed and the events MUST be worked up for this precipitation log. Also, the computer generated MF1-10B form is NOT to be generated until after this log has been finalized.

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications:

PROFESSIONAL PAPERS—Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS—Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS—Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc. TECHNICAL SERVICE PUBLICATIONS—Reports containing data, observations, instructions, etc. A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS—Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS—Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:

NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE 5285 PORT ROYAL ROAD SPRINGFIELD, VA 22161